
				Chemic	al Analysis 945
				[BHU 198	7; AFMC 1995; MHCET 2003]
	Ordina	ry Thinking		(a) <i>Cr</i>	(b) <i>Ni</i>
		i y Timinking		(c) <i>Na</i>	(d) <i>Mn</i>
		Objective Questions	11.	2	SO_4 is added to dry KNO_3 ,
					ese fumes are[CPMT 1988; IIT 198 ;
				(a) SO_2	(b) SO_3
	Prelimina	ry Test		(c) <i>NO</i>	(d) NO_2
			12.		ollowing salt give green e salt is tested by Pt wire
1.		which of the following		(a) Barium salt	(b) Calcium salt
	compound is formed	[CBSE PMT 2002]		(c) Borate	(d) Lead salt
	(a) Meta borate	(b) Tetra borate	13.		n oxalate will not dissolve
2	(c) Double oxide	(d) Ortho borate		in	
2.	is	t give the borax-bead test			[CPMT 1971]
		[MP PMT 1999]		(a) <i>HCl</i>	(b) HNO_3
	(a) Chromium	(b) Nickel		(c) Aqua-regia	(d) Acetic acid
	(c) Lead	(d) Manganese	14.		neating with dilute <i>HCl</i>
3.	Which of the following	is coloured compound?		liberates a gas which (a) Turns lead acetate p	[NCERT 1972]
		[BCECE 2005]			aper black
	(a) CuF_2	(b) <i>Cul</i>	gree	•	aborani aremoniace paper
	(c) <i>NaCl</i>	(d) $MgCl_2$	•	(c) Burns with a blue fla	ame
4.	The composition of 'Gol	den spangles' is [CBSE PMT 199	0]	(d) Smells like vinegar	
	(a) $PbCrO_4$	(b) PbI_2	15.	Starch-iodide paper is u	
	(c) As_2S_3	(d) $BaCrO_4$		(a) Iodine	(b) Iodide ion
5۰		al that imparts apple green	16.	(c) Oxidising agent	(d) Reducing agent wing salt gives white
<u>.</u>		ame when introduced in it	10.		solution and dil. H_2SO_4
	(a) Barium	(b) Strontium		(a) <i>CuCl</i> ₂	(b) $BaCl_2$
	(c) Calcium	(d) Magnesium		(c) $PbCl_2$	(d) $Cu(NO_3)_2$
6.	Which gives violet col	oured bead in borax bead	10	2	l give white dense fumes,
	test		17.	the gases are	i give white delise fumes,
	2+	[BHU 1988; MP PET 1997]		(a) NH_3 and SO_2	(b) SO_2 and steam
	(a) Fe^{2+}	(b) Ni^{2+}		(c) NH_3 and HCl	2
	(c) Co ²⁺	(d) Mn^{2+}	18.	Blue borax bead is obtai	
7.		ction with H_2SO_4 (conc.)			DT Bihar 1982; MP PET 1995]
	2 5 -	compound 'A' which burns		(a) <i>Zn</i>	(b) Cobalt
	-	ompound 'A' is[MP PET 1994]		(c) Chromium	(d) <i>Fe</i>
	(a) $H_2 B_4 O_7$	(b) $(C_2H_5)_2B_4O_7$	19.	-	g imparts green colour to
	(c) $H_3 BO_3$	(d) $(C_2H_5)_3BO_3$		the burner flame (a) $B(OMe)_3$	[DCE 2004] (b) <i>Na(OMe)</i>
8.	On mixing two colour colour is observed. The	less gases, a deep brown gases are [CPMT 1977]		(c) $Al(OPr)_3$	(d) $Sn(OH)_2$
	(a) N_2O and O_2		20.	In laboratory burners, w	
		(d) None of these		(a) Producer gas	(b) Oil gas
•				(c) Gobar gas	(d) Coal gas
9.	ash when its salt is hea	wing metals will give blue ted with Na_2CO_3 solid and	21.	A colourless gas with th	[AFMC 2005]
	$Co(NO_3)_2$ on a charcoal			(a) H_2S	(b) <i>PH</i> ₃
	(a) <i>Cu</i>	(b) <i>Mg</i>		(c) SO_2	(d) None of these
10	(c) <i>Al</i> The metal that does not	(d) <i>Zn</i> give the borax bead test is	22.		is obtained on reacting wo gases at –30°C? [IIT 2005]
10.	The metal that uses hot	BIVE THE DULAX DEAU LEST IS		(a) N_2O	(b) N_2O_3

Get More Learning Materials Here : 📕

946 Chemical Analysis			
(c) N_2O_4 (d) N_2O_5 3. MnO_2 and H_2SO_4 added to $NaCl$, the greenish yellow gas liberated is [Orissa JEE 2005] (a) Cl_2 (b) NH_3 (c) N_2 (d) H_2			will be obtained
$(\mathbf{u}) \mathbf{n}_2$ $(\mathbf{u}) \mathbf{n}_2$		(a) Acidic AgNO ₃	(b) $Mg(NO_3)_2$
Wet Test for acid radical		(c) Ammonical <i>BaCl</i> ₂	(d) Copper nitrate
	10.	-	vapours when treated with
Which of the following statement(s) is(are) correct when a mixture of $NaCl$ and $K_2Cr_2O_7$ is		conc. H_2SO_4 . It contains	ins [DPMT 1981; CPMT 1971]
gently warmed with conc. H_2SO_4 [IIT 1998; CPMT 19		(a) Cl^{-}	(b) <i>I</i> ⁻
gentry warmed with cone. $H_2 50_4$ [111 1998, CFM1 19 MP PMT 2002]	900, AM	(c) ⁴ Br ⁻	(d) NO_3^-
(a) A deep red vapour is evolved	11.	-	added to a salt solution
(b) The vapour when passed into $NaOH$ solution gives a yellow solution of Na_2CrO_4		containing chloroforr violet. Salt contains	n, chloroform layer turns
(c) Chlorine gas is evolved			[CPMT 1982]
(d) Chromyl chloride is formed		(a) <i>Cl</i> ⁻	(b) <i>I</i> ⁻
Starch can be used as an indicator for the		(c) NO_3^-	(d) S^{2-}
detection of traces of [CPMT 1992]	12.	A salt is heated first	with dil. H_2SO_4 and then
(a) Glucose in aqueous solution		with conc. H_2SO_4 . No	reaction takes place. It may
(b) Proteins in blood		be [CPMT 1978]	
(c) Iodine in aqueous solution		(a) Nitrate	(b) Sulphide
(d) Urea in blood		(c) Oxalate	(d) Sulphate
Which of the following combines with <i>Fe</i> (II) ions to form a brown complex[AIIMS 1982, 87; AFMC 1988	13. 8;	gives precipitate of wh	
CBSE PMT 2000; Pb. PMT 2000; MP PET 2000, 01] (a) N ₂ O (b) NO		(a) Violet (c) Canary yellow	(b) Pink (d) Green
-	14.		luble in NH_4OH [AFMC 1987]
(c) N_2O_3 (d) N_2O_5	-4.	_	·
Sodium nitroprusside, when added to an alkaline solution of sulphide ions, produces purple colour		(a) $PbCl_2$	(b) $PbSO_4$
ion due to the formation of [IIT 1995]		(c) AgCl	(d) $CaCO_3$
(a) $Na[Fe(H_2O)_5 NOS]$ (b) $Na_2[Fe(H_2O)_5 NOS]$	15.		als are [DPMT 1983, 89]
(c) $Na_3[Fe(CN)_5 NOS]$ (d) $Na_4[Fe(CN)_5 NOS]$		(a) Coloured	(b) Unstable
In the chromyl chloride test, the reagent used is[AN	/III 10/83]	(c) Soluble in water	(d) Insoluble in water
(a) K_2CrO_4 (b) CrO_3	-1951	colour of the ring is du	
(c) $K_2Cr_2O_7$ (d) $(NH_4)_2Cr_2O_7$		-	AFMC 1981, 88, 90; RPET 1999;
Which of the following will not produce a		MP PMT 200	00; MP PET 2002; CPMT 2004]
precipitate with <i>AgNO</i> ₃ solution [MP PMT 1990]		(a) Ferrous nitrite	(b) $FeSO_4NO$
(a) F^- (b) Br^-		(c) $FeSO_4NO_2$	(d) Ferrous nitrate
(c) CO_3^{2-} (d) PO_4^{3-}	17.		ving precipitate does not excess of <i>NH</i> ₄ <i>OH</i> [MP PMT 199 2
When a mixture of solid <i>NaCl</i> , solid $K_2Cr_2O_7$ is		(a) AgCl	(b) <i>AgBr</i>
heated with conc. H_2SO_4 , orange red vapours are		(c) AgI	(d) None of these
obtained of the compound[CPMT 1974, 78, 81, 88; DP NCERT 1977; AFMC 1982; AMU 1984]	MT 1983 18.	, 89: Aqueous solution of <i>AgNO</i> ₃ solution gives	a salt when treated with a white precipitate, which
(a) Chromous chloride (b) Chromyl chloride		- 5 -	Radical present in the salt is
(c) Chromic chloride (d) Chromic sulphate		(a) <i>Cl</i> ⁻	(b) <i>Br</i> ⁻
Chromyl chloride vapours are dissolved in <i>NaOH</i> and acetic acid and lead acetate solution is added, then		(c) <i>I</i> [−]	(d) NO_3^-
(a) The solution will remain colourless			

Get More Learning Materials Here : 📕

r www.studentbro.in

- 19. When CO₂ is passed into lime water it turns milky. When excess of CO₂ is passed, milkyness disappears because
 (a) Reaction is reversed
 (b) Water example C (UGO) is forward.
 - (b) Water soluble $Ca(HCO_3)_2$ is formed
 - (c) Vaporisable calcium derivative is formed
 - (d) None of these
- **20.** A mixture when heated with conc. H_2SO_4 with MnO_2 brown fumes are formed due to
 - (a) Br^{-} (b) NO_{3}^{-}
 - (c) Cl^{-} (d) l^{-}
- **21.** A substance on treatment with dil H_2SO_4 liberates a colourless gas which produces (i) turbidity with baryta water and (ii) turns acidified dichromate solution green. The reaction indicates the presence of [IIT 1992]
 - (a) CO_3^{2-} (b) S^{2-}
 - (c) SO_3^{2-} (d) NO_2^{-}
- **22.** In the test of sulphate radical, the white precipitate of sulphate is soluble in
 - (a) Conc. HCl (b) Conc. H_2SO_4
 - (c) Conc. HNO_3 (d) None of these
- **23.** To an inorganic mixture dil. H_2SO_4 is added in cold; colourless, odourless gas is evolved. The mixture contains

	[AMU 1982]
(a) Sulphite	(b) Acetate
(c) Nitrite	(d) Carbonate

24. Which reagent is used to remove SO_4^- and Cl^-

	[Pb. PMT 2002]
(a) BaSO $_4$	(b) NaOH
(c) $Pb(NO_3)_2$	(d) <i>KOH</i>

25. is formed when potassium iodide is heated with conc. H_2SO_4 [CPMT 1971]

(a)	HI	(b)	I_2
(c)	HIO ₃	(d)	KIO ₃

26. Chromyl chloride test is performed for the confirmation of the presence of the following in a mixture

[CPMT 1990; KCET 1992; RPET 1999]

- (a) Sulphate (b) Chromium
- (c) Chloride (d) Chromium and chloride
- 27. A reagent that can distinguish between a chloride and a peroxide is [EAMCET 1976]
 (a) Water
 (b) Dil. H₂SO₄

(c) *KOH* solution (d) *NaCl*

- 28. Which reagent below would enable you to remove sulphate ions from a solution containing both sulphate and chloride ions[NCERT 1975; CPMT 1979, 81]
 (a) Sodium hydroxide (b) Barium hydroxide
 (c) Barium sulphate (d) Potassium hydroxide
 29. Ozone when reacts with potassium iodide solution liberates certain product, which turns starch
 - (a) Oxygen (b) Iodine (c) Hydrogen iodide (d) Potassium hydroxide
- **30.** When *KBr* is treated with conc. H_2SO_4 a reddish-
- brown gas is evolved. The evolved gas is[EAMCET 1978] (a) Bromine
 - (b) Mixture of bromine and HBr
 - (c) HBr
 - (d) NO_2
- **31.** A solution of a salt in dilute sulphuric acid imparts deep blue colour with starch iodine solution it confirms the presence of which of the following

[MP PET 2003; NCERT 1974; CPMT 1977]

- (a) NO_2^- (b) I^-
- (c) NO_3^- (d) CH_3COO^-
- **32.** Ammonia reacts with excess of chlorine to form [DPMT 2000]

	[21
(a) N_2 and HCl	(b) NH_4Cl and NCl_3
(c) NCl_3 and HCl	(d) N_2 and NH_4Cl

33. A brown ring appears in the test for

[EAMCET 1978; KCET 1991; Bihar CEE 1995;

ATTNEC	1006.	DOP	10001
AIIMS	1996;	DCE	1999]

🕀 www.studentbro.in

- (a) Nitrate (b) Nitrite
- (c) Bromide (d) Iron
- **34.** Which of the following anions would decolourise acidified $KMnO_4$ solution
 - (a) SO_4^{2-} (b) S^{2-}
 - (c) NO_3^- (d) CH_3COO^-
- 35. The gas which is absorbed by ferrous sulphate solution giving blackish brown colour is[AMU 1999](a) NO(b) CO
 - (c) N_2 (d) NH_2
- **36.** Which one of the following anions is not easily removed from aqueous solutions by precipitation[**IIT 1995**]
 - (a) Cl^{-} (b) NO_{3}^{-}
 - (c) CO_3^{-2} (d) SO_4^{-2}
- **37.** Na_2CO_3 cannot be used to identify [BVP 2004]
 - (a) CO_3^{2-} (b) SO_3^{2-}
 - (c) S^{2-} (d) SO_4^{2-}

CLICK HERE

≫

- The number of hydroxide ions, produced by one 38. molecule of sodium carbonate (Na_2CO_3) on hydrolysis is [Pb. CET 2002] (a) 2 (b) 1 (c) 3 (d) 4
- Gas A is bubbled through slaked lime when a 39. white precipitate is formed. On prolonged bubbling, the precipitate is dissolved. on heating the resultant solution, the white precipitate reappears with the evolution of gas B. The gases A and B respectively are
 - (a) CO_2 and CO(b) CO and CO_2
 - (c) CO and CO (d) CO_2 and CO_2
- **40.** By passing H_2S gas in acidified $KMnO_4$ solution, we get
 - [MP PET 1997]

6.

(a) Ba^{2+}

- (a) K_2S (b) *S* (c) $K_2 SO_3$ (d) MnO_2
- Which of the following doesn't give a ppt. with 41. silver nitrate solution.

	[J & K 2005]
(a) Ethyl bromide	(b) Sodium bromide
(c) Calcium chloride	(d) Sodium chloride

Wet Test for Basic radical

1. Which sulphide is soluble in $(NH_4)_2 CO_3$

(a)	SnS	(b)	As_2S_3
(c)	Sb_2S_3	(d)	CdS

- 2. When acetic acid and $K_4 Fe(CN)_6$ is added to a copper salt, a chocolate precipitate is obtained of the compound
 - (b) Copper ferrocyanide (a) Copper cyanide
 - (c) Basic copper sulphate (d)Basic copper cyanide
- A precipitate of the following would be obtained 3. when HCl is added to a solution of stannous sulphide (SnS) in yellow ammonium sulphide[CPMT 1977; NCERT 19745blution is aqueous
 - (a) SnS (b) SnS_2

(c)
$$Sn_2S_2$$
 (d) $(NH_4)_2SnS_3$

When H_2S is passed through in II group 4. sometimes solution becomes milky. It indicates the presence of

[MP PMT 1995]

- (a) Acidic salt (b) An oxidising agent
- (c) Thiosulphate (d) A reducing agent
- Conc. HNO_3 is added before proceeding to test for 5٠ group III members. This is to [NCERT 1974] (a) Oxidise any remaining H_2S
 - (b) Convert ferrous ion into ferric ion
 - (c) Form nitrates which give granular ppts

	(c) Ca^{2+}	(d) Cr^{3+}
7.	The compound insolub	le in acetic acid is
		[CPMT 1989]
	(a) Calcium oxide	(b) Calcium carbonate
		(d) Calcium hydroxide
8.	when <i>HCl</i> is added to	ing give white precipitate its aqueous solution
	(a) <i>Hg</i> ⁺	(b) <i>Mg</i> ⁺⁺
	(c) Zn^{++}	(d) <i>Cd</i> ⁺⁺
9.	• •	nides which one is insoluble able in alkalies [CPMT 1990]
	(a) <i>PbS</i>	(b) <i>CdS</i>
	(c) <i>FeS</i>	(d) Sb_2S_3
10	Reagent used in the	qualitative analysis of IVth

(d) Increase ionisation of ammonium hydroxide

colour indicates the presence of

A salt gives bright red colour to the flame. This

(b) Sr²⁺

- Reagent used in the qualitative analysis of IVth 10. group is
 - (a) HCl (b) H_2S (alkaline)
 - (c) $(NH_4)_2 S$ (d) None of these
- Which of the following radicals will not be 11. precipitated by passing H_2S in concentrated acid solution [BHU 1986] (a) Copper (b) Antimony
 - (c) Arsenic (d) Cadmium
- Which of the following pairs would be expected to 12. form precipitate when solution are mixed[NCERT 1984]
 - (a) K^+, SO_4^{2-} (b) Na^+, S^{2-}
 - (c) Ag^+, NO_3^- (d) Al^{3+}, OH^{-}
- H_2S will precipitate the sulphides of all the 13. metals from the solution of chlorides of Cu, Zn and Cd, if

[MP PMT 1985]

CLICK HERE

- (b) The solution is acidic
- (c) The solution is dilute acidic
- (d) Any of these solutions is present
- Addition of solution of oxalate to an aqueous 14. solution of mixture of Ba^{++}, Sr^{++} and Ca^{++} will precipitate

[MP PMT 1985]

🕀 www.studentbro.in

- (a) *Ca*⁺⁺
- (b) Ca^{++} and Sr^{++}
- (c) Ba^{++} and Sr^{++} (d) All the three Which one among the following pairs of ions 15. cannot be separated by H_2S in dilute hydrochloric acid [IIT 1986]

(a) Bi^{3+} , Sn^{4+} (b) Al^{3+}, Hg^{2+}

				Chem	ical Analysis	949
	(c) Zn^{2+}, Cu^{2+}	(d) Ni^{2+}, Cu^{2+}		(a) <i>Fe</i> [<i>Fe</i> (<i>CN</i>) ₄]	(b)	CN)6]
5.	Distinguishing reagen	t between silver and lead		(c) $Fe_4[Fe(CN)_6]$	(d) $K_2Fe[Fe]$	
	salts is	[MADT Bihar 1984]	26.	If Na^+ ion and S^{2-} ion of the following will be		
	(a) H_2S gas			(a) <i>MgS</i>	(b) <i>NaCl</i>	
	(b) Hot dilute HCl sol	ution		(c) Na_2S	(d) $MgCl_2$	
	(c) NH_4Cl (solid) + N	H_4OH solution	27.	An aqueous solution		
	(d) NH_4Cl (solid) + (N	$(H_4)_2 CO_3$ solution		treatment with <i>HCl</i> gi solution contains	ves a white pr	recipitate. This
7.	Group reagent for the	e precipitation of group II				[MP PMT 2001]
		ualitative analysis table is[M A	ADT BII		(b) Hg^{2+}	
	(a) Dil. $HCl + H_2S$		- 0	(c) Zn^{2+}	(d) Cd^{2+}	
	(b) NH_4Cl (solid) + N		28.	Lead sulphate is solub (a) In conc. nitric acid		[MP PET 1999]
	(c) $(NH_4)_2 CO_3$ solution	n		(b) In conc. hydrochlo		
	(d) None of these			(c) In a solution of an		ate
•		e precipitated by both HCl		(d) In water		
	and H_2S is	[IIT 1982; CPMT 1989]	29.	Which one of the follo	wing sulphide	s is yellow
	(a) <i>Pb</i> ²⁺	(b) <i>Cu</i> ⁺				[MP PMT 1999]
	(c) Ag ⁺	(d) Sn^{2+}		(a) Zinc sulphide		um sulphide
•	<i>Pb</i> (<i>CH</i> ₃ <i>COO</i>) ₂ givesc	olour with H_2S [DPMT 2000]		(c) Nickel sulphide	(d) Lead su	-
	(a) Orange	(b) Red	30.	When H_2S gas is containing aqueous so		
	(c) Black	(d) White		and $CoCl_2$, which does		
•	-	uished by <i>Fe</i> ³⁺ ion by[DPMT 20	00]	(a) <i>CuS</i>	(b) <i>HgS</i>	-
	(a) NH_4SCN	(b) AgNO $_3$		(c) Bi_2S_3	(d) CoS	
	(c) $BaCl_2$	(d) None of these	31.	Group reagent for ana	lytic group IV	is
•		g change the colour of the ecl ₃ [Roorkee Qualifying 1998]		(a) $NH_4Cl + NH_4OH$	[Kuruksh	netra CET 2002]
	(a) $K_4[Fe(CN)_6]$	(b) <i>H</i> ₂ <i>S</i>		(b) $NH_4Cl + NH_4OH +$	H_2S	
	(c) NH_4CNS	(d) KCNS		(c) $NH_4OH + (NH_4)_2C$		
•		g substances are soluble in		(d) $HCl + H_2S$	- 5	
	concentrated HNO_3	[Roorkee Qualifying 1998]	32.	When H_2S is passed the	nrough <i>Hq₂S</i> w	e get [AIEEE 200:
	(a) BaSO $_4$	(b) <i>CuS</i>		(a) HgS	(b) <i>HgS</i> + <i>I</i>	-
	(c) <i>PbS</i>	(d) <i>HgS</i>		(c) $Hg_2S + Hg$	(d) Hg_2S	
•	Which of the followi titrations	ng cannot give iodometric	33.	How do we differenti group III	-	Fe^{3+} and Cr^{3+} in
		[AIIMS 1997]				[AIEEE 2002]
	(a) Fe^{3+}	(b) Cu^{2+}		(a) By taking excess o		
	(c) Pb^{2+}	(d) Ag^{2+}		(b) By increasing <i>NH</i> ₄		
•	Which of the following	mixture is chromic acid		(c) By decreasing <i>OH</i>	ion concentra	ation
		[Pb. PMT 2000]	34.	(d) Both (b) and (c) $[X] + H_2SO_4 \rightarrow [Y] a d$	colourless gas	with irritating
	(a) $K_2Cr_2O_7$ and HCl	-	54.	smell		
	(b) K_2SO_4 and conc. H_2	SO_4		$[Y] + K_2 C r_2 O_7 + H_2 S O_4$	\rightarrow green solut	tion
	(c) $K_2Cr_2O_7$ and conc.	H_2SO_4		[X] and [Y] is	[IIT-JEE (So	creening) 2003]
	(d) H_2SO_4 and HCl			(a) SO_3^{2-}, SO_2	(b) <i>CI</i> [−] , <i>HC</i>	CI
5.	Which of the follow coloured	ring compounds is brown		(c) S^{2-}, H_2S	(d) CO_3^{2-} ,	<i>CO</i> ₂
		[AFMC 2001]	35.	In the analysis of reagent H_2S gas is gen		

In the analysis of basic radicals, the group 35. reagent H_2S gas is generally used in the groups[MP PMT 26

Get More Learning Materials Here : 💻


CLICK HERE

》

	(a) I and II groups (c) III and V groups	(b) II and III groups (d) II and IV groups	44.		n of the iron group in ammonium chloride is added	
6.	A mixture of two salt	s is not water soluble but dilute hydrochloric acid to		before adding ammon	ium hydroxide to[AIIMS 1980; 1 ,78, 80, 81, 83, 86; KCET 1999]	
	form a colourless solut	ion. The mixture could be[Pb .	PMT 10			
	(a) $AgNO_3$ and KBr	(b) $BaCO_3$ and ZnS		(b) Prevent interferen		
	(c) $FeCl_3$ and $CaCO_3$	5				
s	O_4			(c) Increase concentra		
•	Which of the following	ng is not precipitated as		(d) Increase concentra	-	
•	sulphide by passing H_{24} (a) Copper	S in presence of conc. <i>HCl</i> [MP (b) Arsenic	₽₩₽₽	ocoj to	issian blue coloured ppt. due	
	(c) Cadmium	(d) Lead		_	1980; BHU 1980; MP PET 1995;	
3.	Concentrated sodium	hydroxide can separate a			998; RPET 1999; MP PMT 2001]	
	mixture of			(a) $K_4 Fe(CN)_6$	(b) $Fe_4[Fe(CN)_6]_3$	
	(a) Zn^{2+} and Pb^{2+}	[MP PMT 2000] (b) <i>Al</i> ³⁺ and <i>Zn</i> ³⁺		(c) $KMnO_4$	(d) $Fe(OH)_3$	
	(a) $2n^{2+}$ and Pb^{2+} (c) Cr^{3+} and Fe^{3+}	(b) Al^{3+} and $2n^{3+}$ (d) Al^{3+} and Cr^{3+}	46.	When H_2S gas is pass	sed into a certain solution, it	
,	AgCl dissolves in amm			=	te precipitate. The solution	
	-	[MP PMT 1989; MP PET 2001]		referred to contains ic	ons of [EAMCET 1979]	
		(b) $Ag(NH_3)^+$ and Cl^-		(a) Lead	(b) Zinc	
				(c) Copper	(d) Nickel	
	- (-)	(d) $Ag(NH_3)_2^+$ and Cl^-	47.		would be obtained on adding	
•		d by mixing the solution of			(Sb_2S_3) in yellow ammonium	
		olution of <i>FeCl</i> ₃ [Roorkee 1989]	J	sulphide		
	-	(b) Ferric-ferrocyanide			[CPMT 1979]	
	(c) Ferri-ferricyanide	(d) None of these		(a) Sb_2S_3	(b) Sb_2S_5	
		In fifth group, $(NH_4)_2 CO_3$ is added to precipitate out the conhemited We do not add $N_2 CO_3$		(c) <i>SbS</i>	(d) SbS ₂	
	out the carbonates. We do not add Na_2CO_3		48.	A 0.3 M HCl solution	contains the following ions	
	because	[ATTMC 4000]		Hg^{++} , Cd^{++} , Sr^{++} , Fe^{++} , Cu^{++} The addition of		
	(a) $CaCO_3$ is soluble in	[AIIMS 1982]		H_2S to above solution		
	5	2 9		(a) <i>Cd, Cu</i> and <i>Hg</i>	(b) Cd, Fe and Sr	
	(b) Na_2CO_3 increases carbonates	the solubility of fifth group		(c) Hg, Cu and Fe	(d) <i>Cu, Sr</i> and <i>Fe</i>	
		cipitated out in fifth group	49.		g gives a ppt. with $Pb(NO_3)_2$	
		arpitated out in mult group	79.		[CPMT 1979; MP PET 1997]	
	(d) None of these $\frac{3}{2}$	2+			[ermi 19/9, mr FEI 199/]	
•		<i>Ni</i> ²⁺ ions are present in an		(a) <i>NaCl</i>		
		ss of ammonium chloride		(b) Sodium acetate		
		followed by addition of solution. The available		(c) Sodium nitrate		
	precipitate will contain			(d) Sodium hydrogen phosphate		
	(a) $Zn(OH)_2$ and $Ni(OH)_2$	$()_2$	50.	On adding excess of copper sulphate soluti	ammonium hydroxide to a ion [MP PMT 1995]	
	(b) $Al(OH)_3$ and $Fe(OH)_3$	75		(a) Blue precipitate	of copper hydroxide is	
	(c) $Zn(OH)_2$ and $Al(OH)_2$	$(x)_3$	obta	ined		
)		(b) Black precipitate of	of copper oxide is obtained	
	(d) $Ni(OH)_2$ and $Fe(OH)_2$	() ₃		(c) A deep blue solution	on is obtained	
_	· /- · ·	,-				
•	When H_2S is passed th	rough a mixture containing		(d) No change is obser		
•	When H_2S is passed th	,-	51.	(d) No change is obser		
•	When H_2S is passed th Cu^{+2} , Ni^{+2} , Zn^{+2} in ac	rough a mixture containing	51.	(d) No change is obser	rved	
•	When H_2S is passed th Cu^{+2} , Ni^{+2} , Zn^{+2} in ac	rough a mixture containing idic solution then ion will	51.	(d) No change is observed A black sulphide is for	rved	
	When H_2S is passed th Cu^{+2} , Ni^{+2} , Zn^{+2} in action precipitate	rough a mixture containing idic solution then ion will [RPMT 2002]	51.	(d) No change is observed A black sulphide is for	rved by the action of H_2S	

Get More Learning Materials Here : 💻

				Chemi	cal Analysis 951
52.	An aqueous solution c	ontains the ions as Hg_2^{2+} ,	62.	Sodium carbonate ca	nnot be used in place o
		*. The addition of dilute		ammonium carbonate	for the precipitation of th
	HCl(6N) precipitates	[IIT 1995]		fifth group radicals be (a) Sodium ions inter	fere with the detection o
	(a) Hg_2Cl_2 only	(b) <i>PbCl</i> ₂ only		fifth group radicals	
	(c) $PbCl_2$ and $HgCl_2$	(d) Hg_2Cl_2 and $PbCl_2$			arbonate ions is very low
53.	In the group III radicals	s, in place of NH_4Cl which		(c) Sodium will react w	
	of the following can be	used[AIIMS 1980, 82; MP PMT	1985]	(d) Magnesium will be Nessler's reagent is us	
	(a) NH_4NO_3	(b) $(NH_4)_2 SO_4$	03.	•	89; AIIMS 1997; MP PET 1999
	(c) $(NH_4)_2 CO_3$	(d) NaCl		(a) CrO_4^{2-}	(b) PO_4^{3-}
54 .		assed through saturated		(c) MnO_{4}^{-}	
		ite ppt. is obtained. This is	64.		ed salt was soluble in water
	due to	[CPMT 1979]	04.		e solution a black precipitat
	(a) Impurities in $BaCl_2$	2 0,01			issolve readily in <i>HCl</i> . Th
		(d)Formation of comple	ex	metal ion present is	[BHU 1981]
55.	-	not dissolve in hot dilute		(a) Co ⁺²	(b) Fe^{2+}
	HNO ₃			(c) Ni^{+2}	(d) Mn^{+2}
		[IIT 1996]	65.	Yellow ammonium sul reagent for the separat	phide solution is a suitabl
	(a) <i>HgS</i>	(b) <i>PbS</i>		(a) H_gS and PbS	(b) <i>PbS</i> and Bi_2S_3
_	(c) CuS	(d) CdS		(c) Bi_2S_3 and CuS	
6.	The ion that can be pre- H_2S is	cipitated by <i>HCl</i> as well as	66.		barated from $Al(OH)_3$ b
	-	Г 1996; JIPMER (Med.) 2002]	00.	addition of $re(OH)_3$ can be seen addition of	$AI(OH)_3$ 0
	(a) <i>Pb</i> ²⁺	(b) <i>Fe</i> ³⁺			[BHU 1981
	(c) Zn^{2+}	(d) Cu^{2+}		(a) Dil. <i>HCl</i>	(b) NaCl solution
57.	Which of the following	g sulphate is insoluble in		(c) <i>NaOH</i> solution	(d) NH_4Cl and NH_4OH
	water		67.	The reagents NH_4Cl	and aqueous NH_3 wi
	(a) $CuSO_4$	[MNR 1995] (b) <i>CdSO</i> 4		precipitate	
	(c) $PbSO_4$	(d) $Bi(SO_4)_3$		2.	[IIT 1991
.0	·	ed with dimethyl glyoxime		(a) Ca^{2+}	(b) Al^{+3}
58.		. The metal present is[AFMC 1	982; BI	(c) Mg ²⁺ IU 1979]	(d) Zn^{2+}
	(a) Ni	(b) V	68.	The aqueous solutions be coloured in the case	of the following salts will
	(c) <i>Co</i>	(d) <i>Mn</i>		(a) $Zn(NO_3)_2$	(b) $LiNO_3$
59.		e is poured into a large vhite precipitate produced		(c) $CrCl_3$	(d) Potash alum
	is	vinte precipitate produced	6	5	
		[MP PMT 1985; CPMT 1979]	69.	A mixture containing separated for identific	
	(a) $Bi(OH)_3$	(b) Bi_2O_3		(a) Passing H_2S in acid	
	(c) BiOCl	(d) Bi_2OCl_3		(b) Passing H_2S in alk	
ю.	-	which turns black with		(c) Passing H_2S in net	
	NH ₄ OH			- 2	
	(a) Load chlorida	[AFMC 1981; MP PMT 1995]		(d) Passing H_2S in dry	
	(a) Lead chloride(c) Mercuric chloride	(b) Mercurous chloride (d) Silver chloride	70.	Addition of $SnCl_2$ to H	
51.	Colour of cobalt chlorid			(a) White turning to re gray	ed (b) White turning t
	(a) Pink	(b) Black		(c) Black turning to wl	nite (d) None of thes
	(c) Colourless	(d) Green	71.	•	olution of $AgNO_3$ (excess) i
	.,		71.	added to <i>KI</i> solution	-

Get More Learning Materials Here : 📕

				-
	Particles of <i>AgI</i> are for ion [BHU 2003]	rmed due to adsorption of		(a (t
	(a) NO_3^-	(b) O_2^{-}		(0
	(c) Ag^+	(d) <i>K</i> ⁺		(0
72.	Heamoglobin is a compl		82.	Μ
/	(a) <i>Fe</i> ³⁺	(b) <i>Fe</i> ²⁺		(8
	(c) Fe^{4+}	(d) Cu^{2+}		(ł
73.		salt 'X' is soluble in dilute		(0
3.		solution, it gives a white		
		soluble in excess of NaOH.		(0
	X' is	[KCET 2003]	83.	T.
	(a) $Al_2(SO_4)_3$	(b) $ZnSO_4$		b W
4.	(c) $MgSO_4$ Precipitate of group IV	(d) <i>SnCl</i> ² cations takes place when		(2
t •	H_2S is	cations takes place when		(0
		[RPET 2003]	84.	С
	(a) Highly ionised	(b) Less ionised	_	a
	(c) Not ionised	(d) None of these		(a
5.	In Nessler's reagent for the active species is	the detection of ammonia [Kerala (Med.) 2003]		(0
	(a) Hg_2Cl_2	(b) Hg^{2+}	85.	W
	-22			р: (а
_	(c) Hg_2I_2	(d) HgI_4^{2-}		(0
5.	-	<i>NaOH</i> to a salt solution, a ipitate is formed, which	86.	W
	dissolves in excess a			a
	contains	[MP PMT 1994]		(2
	(a) Chromium ions	(b) Aluminium ions	0-	(0
	(c) Barium ions	(d) Iron ions	87.	W SC
•		conc. <i>HCl</i> sometimes gives 1 the absence of 1 st group,		(2
		to it. It is due to the		(0
	presence of		88.	H
	(a) Hg^{2+}	(b) Sb ³⁺		A
	(c) Ag^{3+}	(d) Sb^{3+} or Bi^{3+} or both		(a
3.	Which of the following	pairs of ions when mixed		(0
	in dilute solutions may		89.	T
		(b) <i>NUL⁺</i> CO ²⁻		p
	(a) Na^+, SO_4^{2-}	(b) NH_4^+, CO_3^{2-}		qı (2
	(c) Na^+, S^{2-}	(d) Fe^{3+}, PO_4^{3-}		(8
).		lowing sulphides is only		(0
	is made dilute	l when the acidic solution	90.	0
	is made and e	[MP PET 2000]		a
	(a) <i>HgS</i>	(b) <i>PbS</i>		() ()
	(c) <i>CdS</i>	(d) <i>CuS</i>	01	A
э.	A reagent used to test the	he presence of Fe^{2+} ion is	91.	W
		[KCET 1998]		n
	(a) H_2S	(b) NH_4CNS		b
	(c) $K_4 Fe(CN)_6$	(d) $K_3 Fe(CN)_6$		(8
ι.	-	nt which is not correct	-	((
	regarding copper sulpha	are	[1	UPS

(a) It reacts with KI to give iodine (b) It reacts with KCl to give Cu_2Cl_2 (c) It reacts with NaOH and glucose to give Cu_2O d) It gives *CuO* on strong heating in air Mark the correct statement [MP PMT 2002] (a) I group basic radicals precipitate as chlorides b) IV group basic radicals precipitate as sulphides (c) V group basic radicals precipitate as carbonates d) All of these statement are correct The following four solutions are kept in separate beakers and copper metal is put in each of them. Which solution will become blue after some time [MP PM] (a) AqNO₃ solution (b) $Zn(NO_3)_2$ solution (c) $Ba(NO_3)_2$ solution (d) $NaNO_3$ solution Cu^{2+} ions will be reduced to Cu^{+} ions by the addition of an aqueous solution of [AIIMS 1992] (a) *KF* (b) *KCl* (c) *KI* (d) *KOH* Which radicals are precipitated in $(NH_4)_2CO_3$ in [Pb. PMT 2001] presence of alkali a) Ca, Ba, Sr (b) *Mq* (c) Both (d) None Which of the following is soluble in yellow ammonium sulphide [MP PET 1994, 97] (a) CuS (b) *CdS* (c) SnS (d) *PbS* Which mixture is separated by conc. aqueous solution of sodium hydroxide (a) Al^{3+} and Sn^{2+} (b) Al^{3+} and Fe^{3+} (c) Al^{3+} and Zn^{2+} (d) Zn^{2+} and Pb^{2+} H_2S is passed through an acidified solution of Ag, Cu and Zn. Which forms precipitate[BHU 1998] a) Ag (b) Zn c) *Cu* (d) None of these The presence of NH_4Cl in the test solution while group precipitating III-A hvdroxides (in ualitative inorganic analysis) helps in (a) Lowering $|OH^-|$ (b) Lowering $[NH_4OH]$ c) Increasing $|OH^-|$ (d) Increasing $[NH_{\downarrow}OH]$ On saturating aqueous solution of Cu (II), Pb (II) and Zn (II) ions with H_2S will precipitate (a) Only CuS (b) Only PbS (c) Both *CuS* and *PbS* (d) CuS, PbS and ZnS A chloride dissolves appreciably in cold water when placed on a platinum wire in Bunsen flame, no distinctive colour is noted, which cation could be present [Pb. PMT 1998] (b) Ba²⁺ (a) Mg^{2+} c) Pb²⁺ (d) Ca²⁺

🚓 www.studentbro.in

[UPSEAT 2001]

Get More Learning Materials Here :

A solid (A) which has photographic effect reacts 92. with the solution of a sodium salt (B) to give a pale yellow ppt. (C). Sodium salt on heating gives brown vapour. Identify A, B and C.

(a) $AgNO_3$, $NaBr$, $AgBr$ (b)	b) $AgNO_3, NaCl, AgCl_2$
------------------------------------	----------------------------------

(c) $AgNO_3$, NaBr, $AgCl_2$ (d) $AgCl, NaBr, AgBr_2$

In qualitative analysis, in order to detect second 93. group basic radical, H_2S gas is passed in the presence of dilute HCl to

[KCET 2004]

- (a) Increase in dissociation of H_2S
- (b) Decrease the dissociation of salt solution
- (c) Decrease the dissociation of H_2S

(d) Increase the dissociation of salt solution

 H_2S gas when passed through a solution of a 94. contains HCl precipitate the cations of group of qualitative analysis but not those belonging to the fourth group. It is because

[CBSE PMT 2005]

- (a) Presence of HCl decreases the sulphide ion concentration
- (b) Presence of HCl increases the sulphide ion concentration
- (c) Solubility product of group II sulphides is more than that of group IV sulphides
- (d) Sulphides of group IV Cations are in HCl
- A metal nitrate reacts with KI to give a black 95. precipitate which on addition of excess of KI convert into orange colour solution. The cation of the metal nitrate is

	[IIT-JEE (Screening) 2005]
(a) Hg^{2+}	(b) Bi^{3+}
(c) Pb^{2+}	(d) <i>Cu</i> ⁺
Which of the following	ng basic radicals will not be
precipated by $H_{a}S$ ga	s in the presence of NH_{2} [Pb.

(a) M (b) N (c)	(a)	Mn^{2+}	(b)	Ni^{2+}
---	-----	-----------	-----	-----------

- (c) Cd^{2+} (d) Ca^{2+}
- On passing H_2S black ppt. of II group is obtained. 97. The mixture may not contain [CPMT 1989] (2) Ph^{++} (b) $C J^{++}$

- (d) Cu⁺⁺ (c) Hg⁺⁺
- 98. Ferrous and ferric ions in solution may be distinguished by using
 - (a) Silver nitrate solution
 - (b) Lead acetate solution
 - (c) Acidified solution of potassium permanganate
 - (d) Sodium chloride solution
- Solution of II A group precipitate in dil. HNO₃ when 99. treated with NH_AOH becomes blue because of the presence of (b) Cd

(a) Mg

96.

_	_	_	_	-	_

- (c) Bi (d) Cu **100.** When calomel react with NH_4OH solution the compound formed is [Orissa JEE 2004] (a) $NH_2 - Hg - Cl$ [BCECE 2005]

(b) $Hg_2Cl_2NH_3$ (c) $Hg(NH_3)_2Cl_2$ (d) $HgCl_2NH_3$

- 101. Copper sulphate solution react with KCN [BCECE 2005]
 - (b) CuCN (a) $K_3[Cu(CN)_4]$ (c) $Cu(CN)_2$ (d) $K_2[Cu(CN)_4]$
- 102. A metal nitrate reacts with KI to give a black precipitate which on addition of excess of KI convert into orange colour solution. The cation of the metal nitrate is [IIT 2005] (a) *Hg*²⁺ (b) *Bi*³⁺
 - (c) *Pb*²⁺ (d) Cu^+
- **103.** H_2S gas when passed through a solution of a contains HCl precipitates the cations of group of qualitative analysis but not those belonging to the fourth group. It is because

[CBSE PMT 2005]

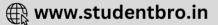
- (a) Presence of HCl decreases the sulphides ion concentration
- (b) Presence of HCl increases the sulophide ion concentration
- (c) Solubility product of group II sulphides is more than that of group IV sulphides
- (d) Sulphides of group IV cations are in HCl.
- 104. Sodium nitroprusside when added to an alkaline solution of sulphide ions produce a [AFMC 2005]
 - (a) Red colouration (b) Blue colouration
 - (c) Purple colouration (d) Brown colouration

Volumetric Analysis

will not be e of NH₃ [Pb. CET12003]What weight of sodium hydroxide is required to F neutralise 100 *ml* of 0.1 *N* – *HCl* [MP PMT 1994]

(a) 4.0 <i>gm</i>	(b) 0.04 <i>gm</i>
(c) 0.4 <i>gm</i>	(d) 2.0 <i>gm</i>

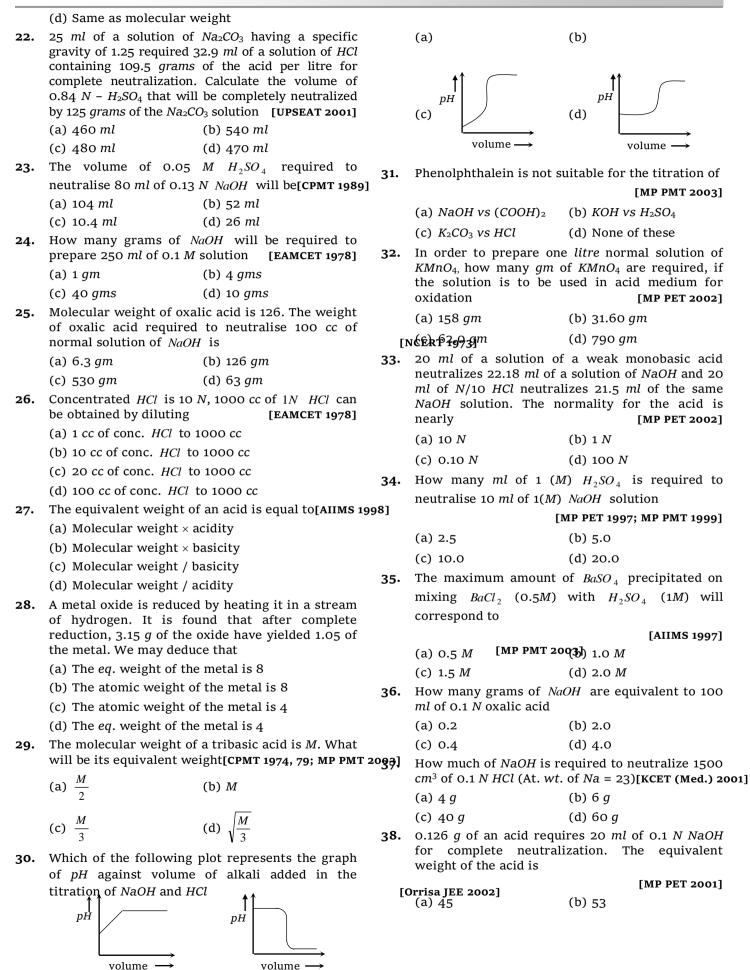
2. The range of methyl orange as an indicator is in between pH


(a) 6 – 8	(b) 8 – 9
(c) 3 – 5	(d) 2 - 4

Phenolphthalein is not a good indicator for 3. titrating

[NCERT 1977]

- (a) *NaOH* against oxalic acid
- (b) Ferrous sulphate against KMnO₄
- (c) NaOH against HCl
- (d) NaOH against H_2SO_4



•	neutralises 12 ml	HaOH solution completely of H_2SO_4 solution. The	12.		and 100 <i>ml</i> of 0.3 <i>N HCl</i> Acidic normality of the
	normality of H_2SO_4 so	blution will be		103010MP PER 199513	[DPMT 1991]
	(a) N/5	(b) <i>N</i> /10		(a) 0.5 <i>N</i>	(b) 0.9 N
	(c) N/8	(d) <i>N</i>		(c) 0.3 <i>N</i>	(d) 0.6 N
	A 100 <i>ml</i> solution of 0.	1 $N - HCl$ was titrated with	13.		$_4$ is mixed to 100 ml 1M
		tion. The titration was			sultant solution will be[NCER
		adding 30 <i>ml</i> of <i>NaOH</i>		(a) Acidic	(b) Neutral
		ng titration was completed <i>DH</i> solution. The volume of		(c) Weakly alkaline	(d) Strongly alkaline
		pleting the titration is	14.	Volume of 0.1 $M H_2SO$	$_4$ required to neutralize 30
		[MP PMT 1997]		ml of 0.2 N NaOH is	EAMCET 1978; MP PMT 2001]
	(a) 16 <i>ml</i>	(b) 32 <i>ml</i>		(a) 30 <i>ml</i>	(b) 15 <i>ml</i>
	(c) 35 ml	(d) 70 <i>ml</i>		(c) 40 <i>ml</i>	(d) 60 <i>ml</i>
		oxide, metal precipitated is equivalent weight of metal[JII	15. PMER 2		ed from 1 <i>litre</i> to 10 <i>litres</i> . on obtained is
	(a) 17	(b) 34		(a) 10 N	(b) 5 <i>N</i>
	(c) 68	(d) 52		(c) 1 <i>N</i>	(d) 0.5 N
		ng acid and 30 <i>ml</i> of 0.2 <i>N</i> of , then the resulting solution	16.		wt. = 90) required 20 <i>ml</i> of lete neutralization. Basicity
	(a) 0.25 <i>N</i> basic	(b) 0.2 <i>N</i> acidic			[CPMT 1979]
	(c) 0.25 <i>N</i> acidic	(d) 0.2 <i>N</i> basic		(a) 1	(b) 2
	What volume at N.T.	<i>P</i> . of gaseous NH_3 will be		(c) 3	(d) 4
	required to be passed into 30 ml of NH ₂ SO ₄		17.		rystaline oxalic acid is[MP PM
	solution to bring dow solution to 0.2 <i>N</i>	n the acid strength of this [UPSEAT 2001]		(a) 12 (c) 53	(b) 63 (d) 40
	(a) 357.2 <i>ml</i>	(b) 444.4 <i>ml</i>	10	Volume of N H so r	oquired to poutralize 10 ml
	(c) 537.6 ml	(d) 495.6 <i>ml</i>	10.	Volume of $\frac{10}{10} H_2 SO_4$ I	equired to neutralize 10 ml
	0 ml of ^N UCL and m			$5 N Na_2 CO_3$ is	
	8 ml of $\frac{-}{10}$ HCl are re	equired to neutralize 20 ml		(a) 100 <i>ml</i>	(b) 50 <i>ml</i>
	solution of Na_2CO_3	in water. Normality of		(c) 500 ml	(d) 1000 ml
	Na_2CO_3 solution is (a) 0.40 N	(b) 0.040 <i>N</i>	19.	The equivalent weig medium will be	ht of <i>KMnO</i> ₄ in alkaline
	(c) 4.0 <i>N</i>	(d) 1.4 N			[MP PMT 2001]
		crystalline oxalic acid (eq.		(a) 31.60	(b) 52.66
	-	N/10 250 ml oxalic acid		(c) 79.00	(d) 158.00
	solution is [MP PMT 1996]		20.	An aqueous solution of 6.3 <i>g</i> oxalic acid dehydrate is made up to 250 <i>ml</i> . The volume of 0.1 <i>N NaOF</i> required to completely neutralize 10 <i>ml</i> of thi	
	(a) 0.158 g	(b) 1.575 <i>g</i>		solution is	
	(c) 15.75 g	(d) 6.3 g			[IIT-JEE (Screening) 2001]
		li is required to complete		(a) 40 <i>ml</i>	(b) 20 <i>ml</i>
		neutralization of 30 <i>ml</i> acid solution. Concentration of the acid solution is		(c) 10 ml	(d) $4 ml$
		[NCERT 1985; CPMT 1986]	21.		of $Na_2S_2O_3$ using $K_2Cr_2O_7$ by ent weight of $K_2Cr_2O_7$ is
	(a) 0.1 <i>N</i>	(b) 0.3 <i>N</i>		is concery, the equival	[IIT-JEE (Screening) 2001]
	(c) 0.15 <i>N</i>	(d) 0.4 <i>N</i>		(a) (Molecular weight)	
				(b) (Molecular weight)	
				(c) (Molecular weight)	

Get More Learning Materials Here : 💻

Get More Learning Materials Here :

	956 Chemical An	alysis			
20	(c) 40 The ratio of amounts of	(d) 63 f H2S needed to precipitate		(c) $\frac{N}{10}$	(d) N
39.		1 100 ml of 1 M AgNO ₃ and [MP PET 2001]	48.		ne same molar concentratio
	(a) 1:2	(b) 2 : 1			[CPMT 1996
	(c) Zero	(d) Infinity		(a) 0.5 $N - H_2 SO_4$	(b) 1.0 $N - H_2 SO_4$
40.		t of a divalent metal is single atom is [MH CET 2000]		(c) 2 $N - H_2 SO_4$	(d) 4 $N - H_2 SO_4$
	(a) 63.64	(b) $\frac{63.64}{6.02 \times 10^{23}}$	49.	Which of the following by passing H_2S	ng pair does not distinguis [CPMT 1996
	(c) $32.77 \times 6.02 \times 10^{23}$			(a) <i>Hg</i> , <i>Pb</i>	(b) <i>Cd</i> , <i>Pb</i>
41.		. ,		(c) As, Cu	(d) Zn, Mn
41.	For the preparation of sodium thiosulphate by "Springs reaction", the reactants used are[EAMCET 2005].			If 100 ml of 1 N sulp	huric acid were mixed wit
	(a) $Na_2S + Na_2SO_3 + Cl_2$ (b) $Na_2S + SO_2$			100 ml of 1 M sodium hydroxide, the solution wi	
				be [MP PET 1999]	
	(c) $Na_2SO_3 + S$			(a) Acidic	(b) Basic
	(d) $Na_2S + Na_2SO_3 + I_2$			(c) Neutral	(d) Slightly acidic
42.	Phenolphthalein is most suitable indicator for the titration of 51.			cm^3 of 0.2 N NaC	<i>l</i> solution is mixed with 10 <i>PH</i> solution. The resultin
	[MP PMT 2000]			solution is	
	(a) CH_3COOH and NH_4OH			(a) 0.1 N and the calu	[MP PET 1996
	(b) CH_3COOH and $NaOl$	H		(a) 0.1 N and the solution (b) 0.05 N and the solution	
	(c) HCl and NH_4OH			(b) $0.05 N$ and the solution	
	(d) H_2CO_3 and NH_4OH			(c) 0.1 N and the solution $(d) = 0.5$ N and the solution	
43.	The simplest formula of a compound containing 50% of element X (at. wt. 10) and 50% of element Y (at. $wt = 20$) is			(d) 0.05 N and the solution For preparing 0.1 N s	solution of a compound from
				its impure sample, of which the percentage purit is known, the weight of the substance require	
	(a) $X_2 Y_3$	[DPMT 2000] (b) <i>XY</i> ₂		will be	[MP PET 1996
	(a) $X_2 Y_3$ (c) $X_2 Y$	(d) XY		(a) More than the the	
44.				(b) Less than the theo	•
11.	The equivalent weight of a metal is 4.0. The vapour density of its chloride is 59.25. Its atomic			(c) Same as theoretic	e
	weight is	[DPMT 2000]		(d) None of these	
	(a) 12	(b) 8	53.		t of <i>Zn(OH</i>)2 in the followin
45.	(c) 36 Indicator for the titra	(d) 24 ation of <i>HCl</i> and Na_2CO_3	550) its, $[Zn(OH)_2 + (NO_3) -$
	would be			2/1(0/1)(1/03) + 1/20]	[MH CET 1999
		[RPMT 1999]		Formula wt	(b) $\frac{\text{Formula wt.}}{1}$
	(a) $K_4 Fe(CN)_6$	(b) $K_3 Fe(CN)_6$		(a) $\frac{\text{Formula wt.}}{2}$	(b) $\frac{1}{1}$
	(c) Phenolphthalein	(d) Methyl orange		(c) $3 \times \text{formula wt.}$	(d) $2 \times \text{formula wt.}$
46.	20 <i>ml</i> of a <i>N</i> solution of	f <i>KMnO</i> 4 just reacts with 20			

46. 20 *ml* of a *N* solution of $KMnO_4$ just reacts with 20 In the titration of strong acid and weak base, the 54. ml of a solution of oxalic acid. The weight of oxalic acid crystals in 1N of the solution is[JIPMER 1999] (a) 31.5 g (b) 126 g

(d) 6.3 g (c) 63 g

47. 0.53 gm of Na_2CO_3 has been dissolved in 100 ml of a sodium carbonate solution. The normality of the solution will be [MP PMT 1996]

(a)
$$\frac{N}{5}$$
 (b) $\frac{N}{2}$

- indicator used is [MH CET 1999]
- (b) Phenolphthalein (a) Thymol blue
- (c) Thymolphthalein (d) Methyl orange

To neutralize 25 ml of 0.25 M Na_2CO_3 solution 55. how much volume of 0.5 *M HCl* is required[MP PET 1994]

- (a) 12.5 ml (b) 25 ml
- (c) 37.5 ml (d) 50 ml

56. 0.16 gm of a dibasic acid required 25 ml of decinormal NaOH solution for complete

neutralization. The ris [CPMT 1989; MP Pl	nolecular weight of the acid E T 1993]	66.	Which indicator can be used in the titration of strong acid and strong base
(a) 32	(b) 64		(a) Only phenolphthalein (b)Only methyl orange
(c) 128	(d) 256		(c) Either of the two (d) Red litmus
N sulphuric acid solu	<i>OH</i> solution and 10 <i>ml</i> of 10 ition are mixed together, the l be[DPMT 1982; MP PET 1993]	67.	The indicator used in titrating weak acid (<i>e.g.</i> oxalic acid) with a strong base (<i>e.g.</i> caustic soda) solution is
(a) Alkali	(b) Weakly acidic		[IIT-JEE 1985; CPMT 1990; MNR 1980;
(c) Strongly acidic	(d) Neutral		NCERT 1973, 77; MP PMT 1994]
Cosin used to detec	t end point of precipitation		(a) Methyl orange (b) Methyl red
titration by adsorptio	n is called[KCET (Med). 2000]		(c) Fluorescein (d) Phenolphthalein
(a) Absorption indica	tor (b) Adsorption indicator	68.	The pink colour of phenolphthalein in alkaline
(c) Chemical indicato	or (d) Normal indicator		medium is
	c acid is dissolved in approx.		[CPMT 1990]
	l of 0.12 <i>N NaOH</i> required for lization of the acid solution.		(a) Due to negative form
The equivalent weigh			(b) Due to positive form [MP PET 2000]
(a) 65	(b) 64		(c) Due to OH^- ions
(c) 63.80	(d) 62.50		(d) Due to neutral form
Molecular weight of equivalent weight is	f a tribasic acid is <i>W</i> , its	69. [Phenolphthalein does not act as an indicator for the titration between[NCERT 1976]CPMT 1974, 79] (a) KOH and H_2SO_4 [NCERT 1976]
(a) 2W	(b) W/3		(b) $Ba(OH)_2$ and HCl
(c) 3W	(d) $W - 3$		() <u>·</u>
Approximate atomic	weight of an element is		(c) <i>NaOH</i> and acetic acid (d) Oxalic acid and <i>KMnO</i> ₄
	ent weight is 8.9, the exact		
atomic weight of elem		70.	If we pharphan phan phan phan phan phan phan phan phan
(a) 26.89	(b) 8.9		(a) No visible change will occur
(c) 17.8			(b) The indicator reacts with the acid
1 <i>gm</i> of hydrogen is found to combine with 80 <i>gms</i> of bromine. 1 <i>gm</i> of calcium (valency 2)			(c) The indicator reacts with the base
combines with 4 gms of bromine. The equivalent			(d) Sodium chloride and carbonic acid will be
weight of calcium is		forn	
	[NCERT 1982]	71.	Methyl orange gives red colour in [NCERT 1972]
(a) 10	(b) 20		(a) Sodium carbonate solution
(c) 40	(d) 80		(b) Sodium chloride solution(c) Hydrochloric acid solution
	oda is dissolved in 100 cc		(d) Potassium hydroxide solution
	ty of solution is[MP PMT 1995]	72.	A 0.1 N solution of Na_2CO_3 is titrated with 0.1 N
(a) 1.0	(b) 0.1		2 3

(a) 1.0 (b) 0.1 (c) 0.5 (d) 4.0

57.

58.

59.

60.

61.

62.

63.

64. Which of the following is required to neutralize 1 *litre* N - NaOH

(a) 1 $l - N - H_2 SO_4$	(b) 1 $l - M - H_2 SO_4$
(c) 1 $l - 2N - H_2 SO_4$	(d) 1 $l - 0.5N - H_2SO_4$

65. What will be the volume of CO_2 at S.T.P., obtained by heating 9.85 *g* of $BaCO_3$ (Atomic number of Ba = 137)

	[MP PMT 2003]
(a) 1.12 <i>litre</i>	(b) 0.84 <i>litre</i>
(c) 2.24 litre	(d) 4.06 <i>litre</i>

74. The strength of a solution (*S*) in *gram/litre*, is related to its normality (*N*) and equivalent weight of solute (e) by the formula

HCl solution. The best indicator to be used is

(c) Methyl red

(a) Phenolphthalein

(c) $K_3[Fe(CN)_6]$

≫

titration is

73.

CLICK HERE

[NCERT 1971; DPMT 1983; AFMC 1992; CPMT 1983, 97]

(a) Potassium ferricyanide (b) Phenolphthalein

When $KMnO_4$ solution is titrated with a solution

containing Fe^{2+} ion, the indicator used in this

(d) Litmus paper

(b) Methyl orange

(d) None of these

Chemical Analysis 957

[CPMT 1989; AIIMS 1996]

(a) $S = \frac{N}{E}$	(b) $S = \frac{E}{N}$
(c) $S = N.E$	(d) All of these

75. The normality of 1 *M* solution of H_3PO_4 will be

-

(a) 1 N (b) 0.5 N(c) 2 N (d) 3 N

76. In the reaction
$$I_2 + 2S_2O_3^- \rightarrow 2l^- + S_4O_6^{2-}$$
;

equivalent weight of iodine will be equal to

[MNR 1985; UPSEAT 2000]

1983, 91]

the

(a) Molecular weight

(b) 1/2 the molecular weight

(c) 1/4 the molecular weight

(d) Twice the molecular weight

77. To what extent must a given solution of concentration of 40 mg silver nitrate per ml be diluted to yield a solution of concentration of 16 mg AgNO₃ per ml [NCERT 1977]

(a) Each *ml* must be diluted to 2.5 *ml*

(b) To each ml of solution 2.5 ml of water should be added

(c) To 2.5 ml of solution 2 ml of water should be added

(d) To 1.5 ml of solution 1.5 ml of water should be added

7 8.	10 ml of conc. H_2SO_4 ((18 molar) is diluted to 1
	<i>litre</i> . The approximate	strength of dilute acid
	could be	[CPMT 1971]
	(a) 0.18 <i>N</i>	(b) 0.36 <i>N</i>
	(c) 0.09 <i>N</i>	(d) 18.00 <i>N</i>

- **79.** For preparing one litre N/10 solution of H_2SO_4 , we need H_2SO_4 [DPMT 1982]
 - (a) 98 gms (b) 10 gms (c) 100 gms (d) 4.9 gms
- (c) 100 gms
 (d) 4.9 gms
 80. What is the concentration of nitrate ions if equal volumes of 0.1 *M* AgNO₃ and 0.1 *M* NaCl are

	mixed together	
		[NCERT 1981; CPMT 1983]
	(a) 0.1 <i>N</i>	(b) 0.2 <i>M</i>
	(c) 0.05 <i>M</i>	(d) 0.25 <i>M</i>
1.	To neutralise 10 ml of	M/5 NaOH the volume of
	M/20 HCl required is	[EAMCET 1980]
		(h) = m l

(a) 10 ml (b) 15 ml (c) 40 ml (d) 25 ml

8

- (c) 40 ml (d) 80 ml What volume of water is to be added
- 84. What volume of water is to be added to 50 ml of 4 N NaOH solution to obtain a 1 N solution[MP PET 2002]
 (a) 100 ml
 (b) 150 ml
 - (c) 200 ml (d) 250 ml
- 85. In alkaline condition $KMnO_4$ reacts as follows, $2KMNO_4 + 2KOH \rightarrow 2K_2MnO_4 + H_2O + O.$ The eq. wt. of $KMnO_4$ is [DPMT 2000] (a) 79 (b) 31.6
 - (c) 158 (d) 52.7
- 86. When a standard solution of *NaOH* is left in the air for a few hours, [Kerala PMT 2004](a) A precipitate will form.
 - (b) Strength will decrease.
 - (c) The concentration of Na^+ ions will decrease.
 - (d) All are wrong.
- 87. In the iodometric estimation in laboratory, which process is involved ? [Orissa JEE 2004]
 - (a) $Cr^2 O_7^{2^-} + H^+ + \Gamma \rightarrow 2Cr^{3^+} + I_2,$ $I_2 + S_2 O_3^{2^-} \rightarrow S_4 O_6^{2^-} + \Gamma$ (b) $MnO_4^- + H^+ + \Gamma \rightarrow MnO_2 + I_2$ $I_2 + S_2 O_3^{2^-} \rightarrow S_4 O_6^{2^-} + \Gamma$
 - (c) $MnO_4^- + OH^- + \Gamma \rightarrow MnO_2 + I_2$

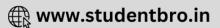
$$I_2 + S_2 O_3^{2-} \to S_4 O_6^{2-} + \Gamma$$

- (d) $Cr_2O_7^{2-} + OH^- + \Gamma \rightarrow 2Cr^{3+} + I_2$ $I_2 + S_2O_3^{2-} \rightarrow S_4O_6^{2-} + \Gamma$
- **88.** What is the volume of 0.1 *N*-*HCl* required to react completely with 1.0 *gm* of pure calcium carbonate.

(a)	$100 \ cm^{3}$	(b)	$150 \ cm^{3}$
(u)	100 cm	(0)	150 cm

(c) 250 cm^3 (d) 200 cm^3

- 89. The weight of a residue obtained by heating 2.76 g of silver carbonate is [Pb. PMT 2004]
 (a) 2.76 g (b) 2.98 g
 (c) 2.16 g (d) 2.44 g
- **90.** What is the molarity of H_2SO_4 solution if 25 ml is
exactly neutralised with 32.63 ml of 0.164 M,
NaOH**[DCE 2003]**
(a) 0.107 M(a) 0.107 M(b) 0.126 M


(c)
$$0.214 M$$
 (d) $-0.428 M$

82. To change the strength of 25 ml of 0.15 M HCl to
0.1 M the quantity of water that is to be added is [EAMCET 1979]
(a) 37.5 ml
(b) 12.5 ml
(c) 25.0 ml
(d) 18.75 mlWeight of $Ca(OH)_2$ needed to prepare 250 ml of
solution with pH = 13
(a) 0.925 g
(b) 0.0125 g83. The volume of 0.1 M H_2SO_4 that is needed to
(c) 0.25 g(c) 0.25 g
(c) 0.25 g
(c) 0.25 g(d) 18.75 ml
(c) 0.25 g
(c) 0.25 g
(c) 0.25 g

completely neutralise 40 ml of 0.2 M NaOH is[EAMCET97979] What will be the volume of a 12 M solution, if it is(a) 10 ml(b) 20 mlequivalent to 240 ml 18 M solution[BVP 2004](a) 6 litre(b) 600 litre

Get More Learning Materials Here : 📕

CLICK HERE

[DPMT 2004]

	(c) 400 litre	(d) 0.36 litre	3.	The salt used for performing 'bead' test in qualitative inorganic analysis is [UPSEAT 2001
•	The volume of $\frac{N}{10}$ NaOF	<i>H</i> require to neutralise 100		(a) $K_2SO_4.Al_2(SO_4)_3.24H_2O$
	ml of $\frac{N}{25}$ HCl is	[Pb. CET 2000]		(b) $FeSO_4.(NH_4)_2SO_4.6H_2O$
	25	[]		(c) $Na(NH_4)HPO_4.4H_2O$
	(a) 30 <i>ml</i>	(b) 100 <i>ml</i>		(d) $CaSO_4 2H_2O$
	(c) 40 ml	(d) 25 <i>ml</i>	4.	Where chlorine water is added to an aqueou
•		aOH required to neutralise		solution of potassium halide in presence of
	30 cm^3 of 0.4 <i>M</i> HCl is	[Pb. CET 2001]		chloroform, a violet colour is obtained. On addin more of chlorine water, the violet colou
	(a) 40 cm^3	(b) 30 cm^3		disappears, and a colourless solution is obtained
	(c) 20 cm ³	(d) 10 cm^3		This test confirms the presence of the following i
•	Solubility of iodine in w adding	vater may be increased by		aqueous solution [CPMT 1990
	adding	[DCE 2004]		(a) Iodide (b) Bromide
	(a) Chloroform	(b) Potassium iodide	5۰	(c) Chloride (d) Iodide and bromide Upon the addition of a solution <i>A</i> to a strong
		(d) Sodium Thiosulphate	5.	acidified solution of barium nitrate, a whit
	-	O ml of O_2 reacts to form		precipitate was obtained which did not dissolv
	-	e end of the reaction [AFMC	2005]	even after large addition of water. Solution contained [NCERT 197
	(a) $10ml$ of H_2	(b) $5ml$ of H_2		(a) Sodium phosphate (b) Sodium carbonate
	(c) 10 <i>ml</i> of O_2	(d) $5ml$ of O_2		(c) Sodium sulphate (d) Sodium chloride
	2	solution for estimation of	6.	To an acid solution of an anion a few drops of
	$Na_2S_2O_3$ is		[Orissa JEE 2005] following, if present will not decolourise th
	(a) I_2 solution	(b) $KMnO_4$		<i>KMnO</i> ₄ solution [MP PMT 1997]
	(c) $K_2 C r_2 O_7$	(d) Oxalic acid		(a) NO_2^- (b) S^{2-}
•	Acidic solution of $S_2 O_3^2$	is converted to in		(c) Cl^{-} (d) CO_{3}^{2-}
	presence of I_2			Orissa JEE 2005]
	(a) $S_4 O_6^{2-} + I^-$	(b) $SO_4^{2-} + I^-$	7.	The brown ring test for NO_2 and NO_3^- is due t
	(c) $SO_3 + I^-$	(d) $S_4 O_6^{2-} + I_3^{-}$		the formation of complex ion with the formula
	(c) 50 3 +1	$(a) 5_4 5_6 + 1_3$		[KCET (Eng./Med.) 2000; Kerala PMT 2004 (a) $[Fe(H_2O)_6]^{2+}$ (b) $[Fe(NO) (CN)_5]^{2+}$
				(a) $[Fe(H_2O)_5]$ (b) $[Fe(H_2O) (OV)_5]$ (c) $[Fe(H_2O)_5NO]^{2+}$ (d) $[Fe(H_2O) (NO)_5]^{2+}$
	🚽 🗕 Critica	I Thinking	8.	Mixture is heated with dil. H_2SO_4 and the lea
=				acetate paper turns black by the evolved gases. Th
		Objective Questions		mixture contains
				(a) Sulphite (b) Sulphide
	A white solid 'A' on her	ting gives off a gas which		(c) Sulphate (d) Thiosulphate
	turns lime water milk	y. The residue is yellow	9.	
	turns lime water milk when hot but turns whit	y. The residue is yellow te on cooling. This solid ' <i>A</i> '	9.	ammonium hydroxide results in a blac
	turns lime water milk		9.	ammonium hydroxide results in a blac precipitate which does not dissolve in excess of
	turns lime water milk when hot but turns whit is [MP PMT 1999]	te on cooling. This solid 'A'	9.	ammonium hydroxide results in a blac precipitate which does not dissolve in excess ONH_4OH . However, when HCl is added to the original solution, a white precipitate is formed
	turns lime water milk when hot but turns whit is [MP PMT 1999] (a) Zinc sulphate (c) Lead sulphate A salt on treatment with	 te on cooling. This solid 'A' (b) Zinc carbonate (d) Lead carbonate h dil. <i>HCl</i> gives a pungent 	9.	ammoniumhydroxideresultsinablacprecipitatewhichdoes notdissolveinexcess O NH_4OH However,when HCl isaddedtothoriginalsolution,awhiteprecipitateisformedThe solution contained[BHU 1975]
	turns lime water milk when hot but turns whit is [MP PMT 1999] (a) Zinc sulphate (c) Lead sulphate A salt on treatment with smelling gas and a yel	 te on cooling. This solid 'A' (b) Zinc carbonate (d) Lead carbonate h dil. <i>HCl</i> gives a pungent llow precipitate. The salt 	9.	ammoniumhydroxideresultsinablackprecipitatewhichdoesnotdissolveinexcess of NH_4OH However,when HCl isaddedtothoriginalsolution,awhiteprecipitateisformedThesolutioncontained[BHU 1973](a)Leadsalt(b)Silver salt
	 turns lime water milk when hot but turns whit is [MP PMT 1999] (a) Zinc sulphate (c) Lead sulphate A salt on treatment with smelling gas and a yel gives green flame when 	 te on cooling. This solid 'A' (b) Zinc carbonate (d) Lead carbonate h dil. <i>HCl</i> gives a pungent llow precipitate. The salt n tested. The salt solution 	9. 10.	ammoniumhydroxideresultsinablacprecipitatewhichdoesnotdissolveinexcessor NH_4OH However,when HCl isaddedtothoriginalsolution,awhiteprecipitateisformedThesolution contained[BHU 1973](a)Leadsalt(b)Silversalt(c)Mercuroussalt(d)Coppersalt
	 turns lime water milk when hot but turns whit is [MP PMT 1999] (a) Zinc sulphate (c) Lead sulphate A salt on treatment with smelling gas and a yel gives green flame when 	 te on cooling. This solid 'A' (b) Zinc carbonate (d) Lead carbonate h dil. <i>HCl</i> gives a pungent llow precipitate. The salt 	-	ammonium hydroxide results in a blac precipitate which does not dissolve in excess of NH_4OH . However, when HCl is added to th original solution, a white precipitate is formed The solution contained [BHU 1973 (a) Lead salt (b) Silver salt (c) Mercurous salt (d) Copper salt If $NaOH$ is added to an aqueous solution of zimions, a white precipitate appears and on addim
	turns lime water milk when hot but turns whit is [MP PMT 1999] (a) Zinc sulphate (c) Lead sulphate A salt on treatment with smelling gas and a yel gives green flame when gives a yellow prece	te on cooling. This solid 'A' (b) Zinc carbonate (d) Lead carbonate h dil. <i>HCl</i> gives a pungent llow precipitate. The salt n tested. The salt solution cipitate with potassium	-	ammoniumhydroxideresultsinablackprecipitatewhichdoesnotdissolveinexcessor NH_4OH However,when HCl isaddedtothoriginalsolution,awhiteprecipitateisformedThe solution contained[BHU 1973](a)Leadsalt(b)Silver salt(c)Mercuroussalt(d)Copper saltIfNaOHisaddedtoanaqueoussolution ofzimions,awhiteprecipitateappearsandonaddinexcessNaOH,theprecipitatedissolves.Inthis
	turns lime water milk when hot but turns whit is [MP PMT 1999] (a) Zinc sulphate (c) Lead sulphate A salt on treatment with smelling gas and a yel gives green flame when gives a yellow prec chromate. The salt is	te on cooling. This solid ' <i>A</i> ' (b) Zinc carbonate (d) Lead carbonate h dil. <i>HCl</i> gives a pungent llow precipitate. The salt n tested. The salt solution cipitate with potassium [MP PET 1996]	-	precipitate which does not dissolve in excess of NH_4OH . However, when HCl is added to the original solution, a white precipitate is formed. The solution contained [BHU 1973] (a) Lead salt (b) Silver salt

Get More Learning Materials Here : 💻

Chemical Analysis 959

- (b) Anionic part
- (c) Both in cationic and anionic parts
- (d) There is no zinc in the solution
- **11.** On performing a borax-bead test with a given inorganic mixture for qualitative analysis, the colour of the bead was found to be emerald green both in oxidising and reducing flame. It indicates the possibility of the presence of

		[MP PMT 2001]
(a) <i>Co</i> ⁺²	(b) <i>Ni</i> ⁺²	
(c) <i>Cr</i> ⁺³	(d) Cu^{+2}	

- 12. A red solid is insoluble in water. However it becomes soluble if some *KI* is added to water. Heating the red solid in a test tube results in liberation of some violet coloured fumes and droplets of a metal appear on the cooler parts of the test tube. The red solid is [AIEEE 2003] (a) $(NH_4)_2Cr_2O_7$ (b) HgI_2 (c) HgO (d) Pb_3O_4
- **13.** An aqueous solution of $FeSO_4$, $Al_2(SO_4)_3$ and chrome alum is heated with excess of Na_2O_2 and filtered. The materials obtained are
 - (a) A colourless filtrate and a green residue
 - (b) A yellow filtrate and a green residue
 - (c) A yellow filtrate and a brown residue
 - (d) A green filtrate and a brown residue
- 14. Phosphoric acid (H_3PO_4) is tribasic acid and one of its salts is sodium dihydrogen phosphate (NaH_2PO_4) . What volume of 1 *M NaOH* solution should be added to 12 *g* of sodium dihydrogen phosphate (mol. wt. 120) to exactly convert it into trisodium phosphate Na_3PO_4

[Kurukshetra	СЕТ	1998]
--------------	-----	-------

(a) 80 ml (b) 100 ml (c) 200 ml (d) 300 ml

15. Three separate samples of a solution of a single salt gave these test results : One formed a white precipitate with excess ammonia solution, one formed a white precipitate with dil. *NaCl* solution and one formed a black precipitate with H_2S . The salt could be [Pb. PMT 1998]

(a)
$$AgNO_3$$
 (b) $Pb(NO_3)_2$

(c)
$$Hg(NO_3)_2$$
 (d) $MnSO_4$

16. 10 *ml* of concentrated *HCl* were diluted to 1 *litre*.20 *ml* of this diluted solution required 25 *ml* of 0.1 *N* sodium hydroxide solution for complete neutralization, the normality of the concentrated hydrochloric acid will be

(a) 8.0	(b) 9.5
(c) 12.5	(d) 15.0

17. To a 25 ml of H₂O₂ solution, excess of acidified solution of KI was mixed. The liberated I₂ require 20ml of 0.3M hypo solution for neutralization. The volume strength of H₂O₂ will be [MP PET 2003] (a) 1.34 ml
(b) 1.44 ml

	(c)	1.60 ml	(d)	2.42 ml
--	-----	---------	-----	---------

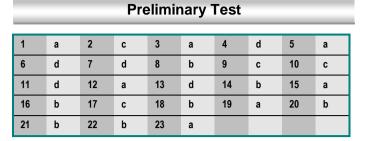
- 18. A chemistry student trying to detect the metallic ion in a salt, makes a paste on a clean platinum wire loop of the salt with concentrated *HCl*. When he takes a small amount of this paste and keeps it in a non-luminous Bunsen flame, the colour of the flame changes to grassy green. He should, therefore, conclude that the metal is[Manipal MEE (a) Barium (b) Calcium (c) Potassium (d) Strontium
- **19.** A white crystalline substance dissolves in water. On passing H_2S in this solution, a black precipitate is obtained. The black precipitate dissolves completely in hot HNO_3 . On adding a few drops of conc. H_2SO_4 a white precipitate is obtained. This precipitate is that of **[CPMT 1990]** (a) $BaSO_4$ (b) $SrSO_4$
 - (c) $PbSO_4$ (d) $CdSO_4$
- 20. The best explanation for the solubility of *MnS* in dil. *HCl* is that [UPSEAT 2001]
 - (a) Solubility product of MnCl₂ is less than that of MnBT 1996]
 - (b) Concentration of Mn^{2+} is lowered by the formation of complex ions with chloride ions
 - (c) Concentration of sulphide ions is lowered by oxidation to free sulphur
 - (d) Concentration of sulphide ions is lowered by formation of the weak acid H_2S

Assertion & Reason For ANMS Aspirants

Read the assertion and reason carefully to mark the correct option out of the options given below :

- (a) If both assertion and reason are true and the reason is the correct explanation of the assertion.
- (b) If both assertion and reason are true but reason is
- not the correct explanation of the assertion. (c) If assertion is true but reason is false.
- (d) If the assertion and reason both are false.
- (e) If assertion is false but reason is true.

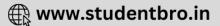
CLICK HERE


- **1.** Assertion : Lime water becomes turbid on passing CO_2 but becomes clear on passing more CO_2 .
 - Reason : Lime water is calcium hydroxide, $Ca(OH)_2$.

[AIIMS 2000]

🕀 www.studentbro.in

2. Assertion : Sb(III) is not precipitated as sulphide when in its alkaline solution H_2S is passed.


	Reason :	The concentration of S^{2-} ion in alkaline medium is inadequate for precipitation.
		[AIIMS 2004]
3.	Assertion :	<i>CuS</i> will give H_2S in dilute acid test.
	Reason :	All sulphides react with dil. H_2SO_4 , on heating, to give H_2S .
4.	Assertion :	$PbCl_2$ will give HCl in conc. H_2SO_4 test.
	Reason :	All chlorides react with conc. H_2SO_4 , on heating, to give <i>HCl</i>
5.	Assertion :	$ZnCO_3$ will not give any gas when treated with conc. H_2SO_4 .
	Reason :	CO_3^{2-} can only be detected in dil. acid
c	A	test.
6.	Assertion : Reason :	<i>CdS</i> is yellow in colour. <i>Cd</i> ²⁺ salts are yellow in colour.
7.		A brown gas which intensifies on
		adding <i>Cu</i> -turnings in conc. H_2SO_4 test is NO_2
	Reason .	Copper reacts with conc. HNO_3 to
	iccubon .	give NO_2 .
8.		CuS is blue in colour.
		All Cu^{2+} salts are blue in colour.
9.	Assertion :	Acidified $K_2Cr_2O_7$ is turned green when SO_2 is passed through it.
	Reason :	In this reaction SO_2 acts as a
		reducing agent.
10.	Assertion :	White ppt. of $AgCl$ is soluble in NH_4OH .
	Reason :	It is due to the formation of soluble complex.
11.	Assertion :	All soluble sulphides gives white ppt. with $BaCl_2$ solution.
		BaS is insoluble in water.
12.	Assertion :	A solution of $BiCl_3$ in conc. HCl when
	Reason :	diluted with water gives white ppt. <i>BiCl</i> ₃ in insoluble in dil. <i>HCl</i> .
12		Addition of NH_4OH to an aqueous
13.	Assertion .	solution of $BaCl_2$ in the presence of
		NH_4Cl (excess) precipitates $Ba(OH)_2$.
	Reason :	
		[AIIMS 2005]
		[2005]

Get More Learning Materials Here : 💻

Answers

Wet Test for Acid Radical

1	abd	2	С	3	b	4	d	5	C
6	а	7	b	8	d	9	a	10	b
11	b	12	d	13	C	14	С	15	C
16	b	17	С	18	а	19	b	20	а
21	C	22	d	23	d	24	C	25	b
26	C	27	b	28	b	29	b	30	a
31	а	32	C	33	а	34	b	35	a
36	b	37	a	38	а	39	d	40	b
41	а								

Wet Test for Basic Radical

1	b	2	b	3	b	4	b	5	b
					U				
6	b	7	C	8	а	9	d	10	b
11	d	12	d	13	C	14	d	15	а
16	b	17	а	18	b	19	C	20	а
21	abcd	22	bcd	23	C	24	C	25	b
26	a	27	a	28	a	29	b	30	d
31	b	32	C	33	d	34	C	35	d
36	b	37	c	38	С	39	d	40	b
41	C	42	b	43	d	44	a	45	b
46	b	47	b	48	a	49	a	50	C
51	а	52	d	53	а	54	C	55	а
56	а	57	d	58	а	59	C	60	b
61	а	62	d	63	d	64	b	65	d
66	C	67	b	68	C	69	а	70	b
71	C	72	b	73	C	74	d	75	d
76	b	77	d	78	d	79	C	80	d
81	b	82	d	83	а	84	C	85	a
86	C	87	b	88	C	89	а	90	d
91	C	92	a	93	C	94	a	95	b
96	а	97	b	98	C	99	d	100	а
101	a	102	b	103	а	104	c		

Volumetric Analysis

1	С	2	С	3	b	4	С	5	a
6	a	7	d	8	С	9	b	10	b
11	a	12	a	13	а	14	a	15	d
16	b	17	b	18	С	19	d	20	a
21	b	22	d	23	а	24	a	25	a
26	d	27	C	28	d	29	C	30	C
31	d	32	b	33	C	34	b	35	a
36	C	37	b	38	d	39	а	40	b

41	d	42	b	43	с	44	а	45	d
46	C	47	С	48	с	49	a	50	C
51	b	52	b	53	b	54	d	55	a
56	с	57	d	58	b	59	с	60	b
61	d	62	b	63	а	64	d	65	a
66	С	67	d	68	а	69	d	70	a
71	с	72	с	73	d	74	C	75	d
76	b	77	а	78	b	79	d	80	C
81	С	82	b	83	С	84	b	85	C
86	b	87	b	88	d	89	с	90	a
91	a	92	d	93	с	94	C	95	b
96	d	97	a	98	а				

Critical Thinking Questions

1	b	2	b	3	c	4	а	5	c
6	d	7	с	8	b	9	C	10	d
11	c	12	b	13	C	14	С	15	a
16	C	17	а	18	а	19	С	20	d

Assertion and Reason

1	b	2	c	3	d	4	d	5	е
6	c	7	a	8	d	9	а	10	a
11	е	12	C	13	b				

Answers and Solutions

Preliminary Test

1. (a) $Na_2B_4O_7.10H_2O \xrightarrow{-10 H_2O} Na_2B_4O_7$

$$\xrightarrow{\Delta} 2NaBO_2 + B_2O_3$$

$$CuO + B_2O_3 \rightarrow Cu(BO_2)_2$$
(Copper meta borate blue)

- **2.** (c) Borax bead test is generally given by transition elements.
- **5.** (a) Ba^{2+} imparts green colour to the flame.
- 6. (d) As Mn^{+2} has all it's electrons (5) unpaired in it's d-orbital, so it's extra stable configuration requires high excitation energy and so it gives violet colour.

8. (b)
$$2NO + O_2 \rightarrow 2NO_2$$

(Deep brown gas)

9. (c) *CoAlO*₂ is formed which is blue. Follow cobalt nitrate-charcoal test.

10. (c) Metals which form basic compounds and have coloured salts give the borax bead test.

11. (d)
$$2KNO_3 + H_2SO_4 \rightarrow 2KHSO_4 + 2NO_2 \uparrow_{(Brown gas)}$$

- **12.** (a) Barium salt gives green coloured flame as it has low ionization energy
- (d) Calcium oxalate will not dissolve in acetic acid (weak acid) but only in strong acid
- 14. (b) $Na_2S + dil.2HCl \rightarrow 2NaCl + H_2S$

$$H_2S + H_2SO_4 + K_2Cr_2O_7 \xrightarrow{\text{acidic}} K_2SO_4 + Cr_2(SO_4)_3 + S$$
(green)

- (a) Starch Iodide paper is used for the test of Iodine, as
 Starch + Iodine → Starch Iodide
- 16. (b) Flame colour of *Ba* salt is green $2AgNO_3 + BaCl_2 \rightarrow 2AgCl + Ba(NO_3)_2$. White ppt.
- **17.** (c) $NH_3 + HCl \rightarrow NH_4Cl$ dense white fumes
- **18.** (b) $CoO + B_2O_3 \xrightarrow{\text{Heat}} Co(BO_2)_2$ Copper metabrate (blue)
- **20.** (b) In laboratory burners, oil gas is generally used. Oil gas is mixture of $CH_4 + CO + CO_2 + H_2$
- **21.** (b) $H_2S \rightarrow$ colourless gas with unpleasant odour of rotten eggs.
 - SO $_2 \rightarrow$ colourless gas with a pungent suffocating odour

 $PH_3 \rightarrow$ colourless gas with unpleasant garlic like odour or rotten fish odour.

22. (b)
$$NO(g) + NO_2(g) \xrightarrow{-30^\circ C} N_2O_3(l)$$

(BLUE)

23. (a) Yellowish-green gas of chlorine with sufocating odour is evolved when the solid chloride mixed with manganese dioxide is heated with concentrated H_2SO_4 .

 $NaCl + H_2SO_4 \rightarrow NaHSO_4 + HCl$ $MnO_2 + 4HCl \rightarrow MnCl_2 + 2H_2O + Cl_2$

Wet Test for Acid Radical

1. (abd) Chromyl chloride test $4 NaCl + K_{2}Cr_{2}O_{2} + 3H_{2}SO_{4} \xrightarrow{\text{heat}}$

$$K_{2}SO_{4} + 2Na_{2}SO_{4} + 2CrO_{2}Cl_{2} + 3H_{2}O_{chromytchloride (orange red)}$$

$$4NaOH + CrO_{2}Cl_{2} \rightarrow 2NaCl + Na_{2}CrO_{4} + 2H_{2}O_{Sod. chromate (Yellow)}$$

$$Na_{2}CrO_{4} + (CH_{3}COO)_{2}Pb \rightarrow 2CH_{3}COONa +$$

$$PbCrO_4 \downarrow$$

Lead chromate (yellowppt.)

CLICK HERE

- 2. (c) Starch is colourless but Starch + Iodine \rightarrow Starch Iodine (violet) \rightarrow Starch Iodine
- 3. (b) Brown ring test with ($FeSO_{4...}NO$)

4. (d)
$$Na_4[Fe(CN)_5 NO] + S^{2-} \rightarrow Na_4[Fe(CN)_5 NOS]$$

Sodium thio-nitroprusside
(violet)

6. (a) With F^- , no precipitate is obtained because of low lattice energy of AgF, so it remains in ionized state

(b)
$$NaCl + H_2SO_4 \rightarrow NaHSO_4 + HCl$$

 $K_2Cr_2O_7 + 2H_2SO_4 \rightarrow 2KHSO_4 + 2CrO_3 + H_2O$
 $CrO_3 + 2HCl \rightarrow CrO_2Cl_2$
(orange red vapour)

8. (d)
$$CrO_2Cl_2 \xrightarrow{NaOH} Na_2CrO_4 \xrightarrow{CH_3COOH} CH_3COOP_b$$

$$[(CH_3COO)_2Pb] \xrightarrow{COO_2OO_2} \rightarrow PbCrO_2$$

yellowppt.

(a)
$$2AgNO_3 + H_2S \rightarrow Ag_2S + 2HNO_3$$

Black ppt.

7.

10. (b) Iodine vapours are violet
$$\therefore$$
 the salt must contain I^- as
 $KI + H_2SO_+ \rightarrow KHSO_+ + HI_-$

$$2HI + H_2SO_4 \rightarrow I_2 + 2H_2O + SO_2$$

- 11. (b) As Cl^- is more electronegative than Br^- and $I^ \therefore$ it replaces them from their salt as $2I^- + Cl_2 \rightarrow I_2 + 2Cl^- \Rightarrow$ Violet vapour $2Br^- + Cl_2 \rightarrow Br_2 + 2Cl^- \Rightarrow$ Brown vapour
- 12. (d) The salt must have SO_4^{2-} group which is also present in the acid so reaction is not takes place.
- **13.** (c) Phosphates give canary yellow precipitate with ammonium molybdate in the presence of conc. HNO_3

$$H_3PO_4 + 12(NH_4)_2MOO_4 + 21HNO_3$$

(NH_4)₃ PO_4 .12 $MOO_3 + 21NH_4NO_3 + 12H_2O_3$
ammonium phosphomo lybdate
(canary yellow ppt)

- 15. (c) Nitrates and acetates of all metals are water soluble.
- 16. (b) When NO₃⁻ is passed through FeSO₄ (neutral) and then few drops of conc. H₂SO₄ is added then the brown ring is obtained.
 FeSO₄ + NO → Fe(NO)SO₄

- 17. (c) AgCl and AgBr dissolve in NH_4OH and form complexes but AgI doesn't react with NH_4OH . e.g. $AgCl + 2NH_4OH \rightarrow [Ag(NH_3)_2]Cl + 2H_2O$ complex
- 18. (a) When Cl^- , Br^- and F^- are treated with $AgNO_3$ solution in presence of dilute HNO_3 , corresponding silver halide is obtained which is soluble in NH_4OH , NaCN, and $Na_2S_2O_3$.

$$AgNO_{3} + NaCl \longrightarrow AgCl \downarrow + NaNO_{3}$$

$$AgCl + dil.2NH_{4}OH \longrightarrow \left[Ag(NH_{3})_{2}\right]Cl + 2H_{2}O$$

$$complex$$

🕀 www.studentbro.in

19. (b) $Ca(OH)_2 + CO_2 \longrightarrow CaCO_{3(S)} + H_2O$ lime water white precipitate

$$CaCO_3 + CO_2(\text{excess}) + H_2O \longrightarrow Ca(HCO_3)_2$$

so lub le

20. (a) It is a lab method for the preparation of $Br_2 e.g.$ $2 KBr + MnO_2 + H_2SO_4 \rightarrow$

$$Br_2 + 2 KHSO_4 + MnSO_4$$

21. (c)
$$Na_2SO_3 + 2HCl(dil.) \rightarrow 2NaCl + H_2O + SO_2$$
,
 $K_2Cr_2O_2 + H_2SO_4 + 3SO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + H_2O$
(Green)

- **22.** (d) As the sulphate radical is a strong oxidising agent, it is insoluble in acids and so detection of sulphate radicle requires no other reagent.
- 23. (d) Sulphite radicle will give a burning sulphur odour. Acetate radical will give a sweet, venegar odour. Nitrite will give a reddish brown gas. Carbonate will give a colourless, odourless gas, *i.e.* CO₂.
- 24. (c) $PbSO_4$ and $PbCl_2$ are insoluble in cold water hence the reagent $Pb(NO_4)_2$ is used to remove SO_4^{2-1} and Cl^{-1}

$$2KI + 2H_{-}SO_{+}(Conc) \rightarrow 2KHSO_{+} + 2HI$$

$$(6) \quad 2KI + 2H_2SO_4 \quad (Colle.) \rightarrow 2KHSO_4 + 2HI$$

$$MnO_2 + H_2SO_4 \rightarrow MnSO_4 + H_2O + (O)$$

$$2HI + (O) \rightarrow H_2O + I_2$$

$$2KI + MnO_2 + 3H_2SO_4 \rightarrow I_2 + MnSO_4 + 2H_2O$$

$$+2KHSO_4$$

26. (c) It is a test for chloride ion.

25

39.

40.

 (\mathbf{h})

- 27. (b) Dil. H_2SO_4 doesn't react with chloride but reacts with peroxide
- **28.** (b) $Ba(OH)_2$ is not highly basic and bond is not easily broken
- **29.** (b) Ozone react with *KI* solution to liberate I_2 gas.

30. (a)
$$2KBr + MnO_2 + 3H_2SO_4 \rightarrow MnSO_4 + 2KHSO_4 + 2H_2O + Br_2 \uparrow_{\text{(reddish brown gas)}}$$

- **32.** (c) $NH_3 + 3Cl_2 \rightarrow NCl_3 + 3HCl$
- **33.** (a) At the junction of salt solution and $FeSO_4$ solution with conc. H_2SO_4 a brown ring is obtained ($FeSO_4$.NO) Brown ring

34. (b)
$$2KMnO_4 + 3H_2SO_4 + 5H_2S \rightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 5S$$

- 35. (a) $3FeSO_4 + NO_2 + 3H_2SO_4 \rightarrow Fe_2(SO_4)_3 + FeSO_4.NO + H_2O_{(Black brown)}$
- **36.** (b) As most of the nitrates are soluble in water.
- 37. (a) SO²⁻₃, S²⁻ and SO²⁻₄ salts from comparatively stronger acids (than H₂CO₃) in solution hence evolve CO₂ with Na₂CO₃ solution and give effervesence. While CO²⁻₃ does not react with Na₂CO₃ solution
 38. (a) Na₂CO₂ + 2H₂O → 2NaOH + H₂CO₂
 - (a) $Na_2CO_3 + 2H_2O \rightarrow 2NaOH + H_2CO_3$ and $2NaOH \xrightarrow{(ionisation)} 2Na^+ + 2OH^-$ Hence, it is clear that $2OH^-$ ions will be formed on hydrolysis of one molecule of sodium corbonate.
 - (d) According to the equation, $Ca(OH)_2 + CO_2 \xrightarrow{\Delta} CaCO_3 + H_2O$ $CaCO_3 + H_2O + CO_2 \longrightarrow Ca(HCO_3)_2$ $Ca(HCO_3)_2 \xrightarrow{\Delta} CaO + H_2O + 2CO_2$

Hence, the gas A and B are CO_2 and CO_2 respectively

- (b) $2KMnO_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 5S + 8H_2O_4$
- **41.** (a) It doesn't provide free Br^- ions to react with AgNO₃.

Wet Test for Basic Radical

1. (b) As_2S_3 forms complex with $(NH_4)_2CO_3$

2. (b)
$$Cu(NH_3)_4(NO_3)_2 + 4CH_3COOH \rightarrow Cu(NO_3)_2 + 4CH_3COONH_4$$

$$2Cu(NO_3)_2 + K_4[Fe(CN)_6] \rightarrow Cu_2Fe(CN)_6 + 4KNO_3$$

3. (b) $SnS + (NH_4)_2 S_2 \xrightarrow{HCl} (NH_4)_2 S + SnS_2$

- 4. (b) For the solution to become milky H_2S must be oxidised to SO_2
- 5. (b) HNO_3 oxidises Fe^{2+} to Fe^{3+} otherwise Fe^{2+} is not completely precipitated as hydroxide
- 6. (b) Sr^{2+} give bright red colour to the flame
- 7. (c) Calcium oxalate will not dissolve in acetic acid (weak acid) but only in strong acid

8. (a)
$$2Hg + 2HCl \rightarrow Hg_2Cl_2 + H_2$$

white ppt.

- 9. (d) It is an acidic salt
- 10. (b) In presence of *NH*₄*OH*, dissociation of *H*₂*S* is remarkably high so increases the solubility product of IVth group sulphides $H_2S \square 2H^+ + S^{2-}$

$$NH_4OH \rightarrow NH_4^+ + OH^-$$

$$OH^- + H^+ \rightarrow H_2O$$

- **11.** (d) As cadmium belongs to the IInd group and is precipitated as sulphide and not as chloride.
- (d) Aluminium is in IIIrd group and is precipitated as hydroxide [*Al*(*OH*)₃].

13. (c) Due to common ion effect as

$$HCl \rightarrow H^+ + Cl^- : H \cdot S \rightarrow 2 \cdot H^+ + S^{2-}$$

$$HCl \rightarrow H + Cl \quad ; \quad H_2S \rightarrow 2H + S$$

- 14. (d) Oxalate of these metals are insoluble
- **15.** (a) Both will precipitate as sulphide.
- 16. (b) Both Pb and Ag form white ppt. of their chlorides. But $PbCl_2$ is soluble in hot water while AgCl does not dissolve in hot water.

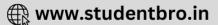
19. (c)
$$(CH_3COO)_2Pb + H_2S \rightarrow 2CH_3COOH + PbS \downarrow_{black ppt}$$

20. (a) $(NH_4)SCN$ is a red colour substance.

21. (abcd)
$$FeCl_3 + K_4 [Fe(CN)_6] \rightarrow Fe_4 [Fe(CN)_6]_3$$

Ferri ferrocy and (Blue)
 $2FeCl_3 + 3H_2S \rightarrow Fe_2S_3 + 6HCl$

$$3NH_4CNS + FeCl_3 \rightarrow Fe(CNS)_3 + 3NH_4Cl$$
(Blood red)
$$FeCl_2 + 3KCNS \rightarrow Fe(CNS)_2 + 3KCl$$


- (Blood red) **24.** (c) (Conc. $H_2SO_4 + K_2Cr_2O_7$) mixture is called as chromic acid.
- 26. (a) $NaCl > MgCl_2 > Na_2S > MgS$ Solubility decreasing order
- **30.** (d) Cobalt sulphide does not ppt. in second group. **31.** (b) $B_{T}(C) \rightarrow D_{T}(C) \rightarrow H_{T}(C) \rightarrow C_{T}(C)$

(b)
$$BaCO_3 + 2HCl \rightarrow BaCl_2 + H_2O + CO_2$$

 $ZnS + 2HCl \rightarrow ZnCl_2 + H_2S$

37. (c) Cd^{2+} is not precipitated by H_2S in concentrated acid solution that is why the solution is diluted before passing H_2S through it.

CLICK HERE

36.

39. (d)
$$AgCl + 2NH_3 \rightarrow [Ag(NH_3)_2]Cl \approx [Ag(NH_3)_2]^+ + Cl^-$$

complex

40. (b)
$$Fe^{3+} + K_4[Fe(CN)_6] \rightarrow K[Fe[Fe(CN)_6]] + 3K$$

Prussian blue

- **41.** (c) As Na_2CO_3 is a strong electrolyte it will cause the precipitation of $MgCO_3$. So $(NH_4)_2CO_3$ is used as it's a weaker electrolyte than Na_2CO_3 .
- 42. (b) As the concentration of OH⁻ ions is less due to common ion effect but enough to precipitate the IIIrd group radicals as hydroxides, as the solubility product of III group hydroxides is lower than IV, V and VI group hydroxides.
- **44.** (a) As NH_4Cl is a strong electrolyte. It supresses the ionization of NH_4OH , so the concentration of OH^- ions in the solution is decreased, but it is sufficient to precipitate the III group basic radicals because the solubility product of III group hydroxides is lower than IV, <u>V and VI</u> group hydroxides. As

$$\begin{array}{c|c} NH_4OH \Box & NH_4^+ & + OH^- \\ NH_4Cl \rightarrow & NH_4^+ & + Cl^- \\ Common & on effect \end{array}$$

45. (b)
$$4 \operatorname{FeCl}_3 + 3K_4[\operatorname{Fe}(CN)_6] \rightarrow \operatorname{Fe}_4[\operatorname{Fe}(CN)_6]_3 + 12 \operatorname{KCl}_{\operatorname{Prussian}_{\operatorname{Blue colour}}}$$

- 46. (b) ZnS is white.
- 47. (b) $Sb_2S_3 + 2(NH_4)_2S_2 \rightarrow 2(NH_4)_2S + Sb_2S_5$
- 48. (a) The second group radicals will precipitate because their solubility product is very low so sulphates will be precipitated.
- **49.** (a) As $Pb(NO_3)_2$ is an ionic compound so the reaction is easy. $Pb(NO_3)_2 + 2NaCl \rightarrow 2NaNO_3 + PbCl_2$, but $Ba(NO_3)_2$ has a higher lattice energy, so no reaction takes place.

50. (c)
$$4NH_4OH + CuSO_4 \rightarrow [Cu(NH_3)_4]SO_4 + 4H_2O_{(excess)}$$

51. (a)
$$CuCl_2 + H_2S \rightarrow CuS_{(Black ppt.)} + 2HCl_{(Black ppt.)}$$

- **52.** (d) As they have low K_{sp} value.
- 53. (a) NH_4^+ ions are required to supress the ionization of NH_4OH but sufficient to precipitate the III group radicals. $(NH_4)_2SO_4$ can't be used as SO_4^{2-} ions will precipitate Ba^{2+} as $BaSO_4$
- 54. (c) White precipitate obtained is of $BaCl_2$, as the Cl^- ion's concentration increases due to the addition of HCl, the ionic product becomes more than solubility product and thus, $BaCl_2$ is precipitated
- **55.** (a) $HgS + HNO_3 \rightarrow No$ reaction
- 56. (a) Pb^{2+} as it's precipitated as chloride and sulphide in Ist and IInd group respectively
- 57. (d) As $Bi(SO_4)_3$ is a covalent compound with high lattice energy and hence it is insoluble in water.
- **58.** (a) The solution must contain Ni^{+2} as it forms a complex with DMG giving $[Ni(DMG)_2]$ which is red in colour.

59. (c)
$$BiCl_3 + H_2O \rightarrow BiOCl_{(white ppt)} + 2HCl_{(white ppt)}$$

60. (b)
$$Hg_2Cl_2 + 2NH_4OH \rightarrow NH_2 - Hg - Cl + Hg_{(Black ppt)} + NH_4Cl + 2H_2O$$

62. (d) When $(NH_4)_2CO_3$ is used then the concentration of CO_3^{2-} is comparatively low but when Na_2CO_3 is added then concentration of CO_3^{2-} increases so Mg^{2+} will be precipitated along with other 5th group radicals

63. (d) Nessler's reagent gives red precipitate with
$$NH_4^+$$

NH

$${}_{4}Cl + 2K_{2}[HgI_{4}] + 4KOH \rightarrow$$

$$NH_{2} - Hg - O - Hg - I + 7KI + KCl + 3H_{2}C$$

$$Iodide of Millon's base (Brown ppt)$$

- **64.** (b) *FeS* is soluble in *HCl*. Also Fe^{2+} salts are green.
- **65.** (d) Cd^{+2} belongs to II A group while As^{+3} to II B. All the sulphides of II B are soluble in yellow ammonium sulphide but those of II A are insoluble.
- **66.** (c) As $Fe(OH)_3$ is soluble in *NaOH* whereas $Al(OH)_3$ is not.

67. (b)
$$NH_3 + H_2O \rightarrow NH_4OH$$
 due to common ion effect NH_4^+ ion concentration increases which leads to the

- precipitation of Al(OH)₃.
 68. (c) CrCl₃, as Cr⁺³ ⇒ 3d³, has unpaired electron in d-orbital as a result it will show paramagnetism and thus forms coloured complexes.
- **69.** (a) Cu^{2+} will be precipitated as *CuS* in acidic medium where as Ni^{2+} is not precipitated.
- **70.** (b) Even $SnCl_2$ added into $HgCl_2$ solution to give white gray colour.

76. (b)
$$Al^{+3} + (OH^{-})_3 \rightarrow Al(OH)_3$$
 (white ppt.)

which is soluble in excess alkali.

- (d) As the ionic product of Sb³⁺ and Bi³⁺ is very low and Cl⁻ is present in high concentration, therefore Sb and Bi get precipitated, as
 Sb³⁺ + 3Cl⁻ → SbCl₃
- **78.** (d) $Fe_3(PO_4)_2$ is insoluble in water.
- **79.** (c) Sulphide having high ionic product are completely precipitated in acidic medium. *CdS* has maximum ionic product hence it is completely precipitated.

80. (d)
$$3FeCl_2 + 2K_3[Fe(CN)_6] \rightarrow Fe_3[Fe(CN)_6]_2 + 6KCl$$

blue colour

83. (a)
$$Cu + 2AgNO_3 \rightarrow Cu(NO_3)_2 + 2Ag$$

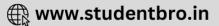
84. (c)
$$2CuSO_4 + 4KI \rightarrow 2CuI + 2K_2SO_4 + I_2$$
.
Cuprous iodide

85. (a) *Ca*, *Ba*, *Sr* these radicals are precipitated in basic medium.

88. (c)
$$Cu^{2+} + H_2 S \rightarrow CuS \downarrow_{\text{black ppt.}}$$

$$89. (a) NH_4OH \square NH_4^+ + OH$$

 $NH_4Cl \rightarrow NH_4^+ + Cl^-$


 NH_4Cl decreases the dissociation of NH_4OH by common ion effect

93. (c) *HCl* suppresses ionisation of weakly dissociated H_2S , with the result only the ionic product of the sulphides of group II radicals exceed their corresponding solubility product and hence only these are precipitated.

97. (b)
$$Cd^{++} + H_2S \rightarrow CdS + H_2O$$

98. (c) Acidified solution of potassium permanganate. $Fe^{+2} \xrightarrow{KMnO_4} Fe^{+3}$

Get More Learning Materials Here :

$$Fe^{+3} \xrightarrow{KMRO_4} \text{No reaction}$$
99. (d) $CuCl_2 + 2HNO_3 \rightarrow Cu(NO_3)_2 + 2HCl$
 $Cu(NO_3)_2$ reacts with NH_4OH and gives $Cu(NH_3)_4^{2+}$
which has deep blue colour.
102. (b) $Bi(NO_3)_3(aq) + 3KI(aq) \longrightarrow BiI_3(s)$
 $+ 3KNO_2(aq)$

$$+ 3KNO_{3}(aq) \qquad \qquad \text{Black}$$

$$BiI_{3}(s) + KI(aq) \longrightarrow K[BiI_{4}]$$
Orange colour

103. (a) HCl suppresses ionisation of weakly dissociated H_2S , with the result only the ionic product of the sulphides of group II radicals exceed their corresponding solubility product and hence only these are precipitated.

104. (c)
$$Na_2S + Na_2[Fe(NO)(CN)_5] \rightarrow$$

sodium nitropruss ide

 $Na_3[Fe(ONSNa)(CN)_5]$ or $Na_4[Fe(CN)_5NOS]$ purple colour complex violet coloured complex

Volumetric Analysis

1. (c)
$$0.1 = \frac{x \times 1000}{40 \times 100} \Rightarrow x = 0.45 \ gms$$
.

- 2. (c) As methyl orange is a weak base.
- (b) Phenolphthalein is an indicator for strong base and weak 3. acid, but KMnO₄ oxidises it.

4. (c)
$$N_1 V_1 = N_2 V_2$$
, $\frac{1}{10} \times 15 = N_2 \times 12 \implies N_2 = \frac{1}{8} N$

5. (a) In the neutralization of acid and base $N \times V$ of both must be equivalent $N \times V$ of $HCl = 0.1 \times 100 = 10$

. .

 $N \times V$ of $NaOH = 0.2 \times 30 = 6$

as to obtain 10 $N \times V$ of base

$$4 N \times V \text{ of base is required}$$

$$N \times V \text{ of } KOH = 0.25 \times 16 = 4$$

$$N_1V_1 = N \times V + N \times V$$

$$NaOH$$

$$0.1 \times 100 = 0.2 \times 30 + 0.25 \times V$$

$$10 = 6 + 0.25 V$$

$$V = \frac{400}{0.25} \implies V = 16 \text{ ml}$$

(a) 1 - 0.68 = 0.32 g oxygen 6.

$$\frac{0.68}{eq.wt.} = \frac{0.32}{8} \implies eq.wt. = \frac{0.68 \times 8}{0.32} = 17$$

7. (d)
$$V_1 = 20 \ ml, N_1 = 0.25 \ N, V_2 = 30 \ ml$$

 $N_2 = 0.2N$
 $\therefore N = \frac{N_1 V_1 + N_2 V_2}{V_1 + V_2} = \frac{20(0.25) + 30(0.2)}{20 + 30}$
 $= \frac{5+6}{50} = \frac{11}{50} = 0.2N \text{ basic}$

9. (b)
$$N_1 V_1 = N_2 V_2 \Rightarrow \frac{1}{10} \times 8 = N_2 \times 20$$
, $\therefore N_2 = 0.04 N_2$
10. (b) $N = \frac{W_B \times 1000}{E \times V} \Rightarrow \frac{N}{10} = \frac{x \times 1000}{63 \times 250}$

$$\therefore x = 1.575 \ grams$$

11. (a)
$$N_1 V_1 = N_2 V_2$$

 $15 \times 0.2 = 30 \times x \therefore x = 0.1 N$

- 12. (a) $N_1V_1 + N_2V_2 = N_3V_3$ $200 \times 0.6 + 100 \times 0.3 = N_3 V_3$ and $V_3 = V_2 + V_1 = 300 \ ml$ $\therefore N_3 = 0.5 N$
- (a) 10 $M H_2 SO_4 \Rightarrow 20 N H_2 SO_4$ 13. $\therefore 20 \times 10 = 200$ for H_2SO_4 and $100 \times 1 = 100$ for *NaOH* ∴ Acidity>Basicity

14. (a)
$$0.1M$$
 of $H_2SO_4 \Rightarrow 0.2N$ of H_2SO_4
 $\therefore N_1V_1 = N_2V_2$ [$N = 2m$ for H_2SO_4]
 $0.2 \times V_1 = 30 \times 0.2$
 $\therefore V_1 = 30 ml$

15. (d)
$$N_1 V_1 = N_2 V_2$$
 $5N \times 1$ lit = $x \times 10$ lit.
 $\therefore x = 0.5 N$

16. (b) Normality =
$$N = \frac{W_B \times 1000}{Eq.wt \times V}$$

$$\therefore \text{ Eq. Wt} = \frac{0.45 \times 1000}{0.5 \times 20} = 45$$
$$\therefore \text{ Basicity} = \frac{\text{Molec. Wt}}{\text{Eq. Wt}} = \frac{90}{45} = 2$$

17. (b)
$$\stackrel{COOH}{\downarrow}$$
 $2H_2O \rightarrow 126$ is molecular wt.
 $COOH$
 \therefore Equivalent wt. = Molecular wt. / 2 = 63

18. (c)
$$N_1 V_1 = N_2 V_2 \implies 5 \times 10 = \frac{1}{10 x} \times x \quad \therefore x = 500 \, ml$$

19. (d)
$$KMnO_4 \rightarrow K_2MnO_4$$

$$\frac{\text{Molecular weight}}{1} = \frac{158}{1} = 158$$

21. (b) Hyposolution are used as the reducing agent with potassium dicromate solution +6 Molecular weight

$$K_{2}Cr_{2}O_{7} = \frac{\text{Molecular weight}}{6}$$
22. (d) $N_{1}V_{1} = N_{2}V_{2}$
 $N \times 25 = \frac{109.5 \times 32.9}{36.5} \Rightarrow N = \frac{109.5 \times 32.9}{36.5 \times 25}$
 $N_{3}V_{3} = N_{4}V_{4}$ ($V_{3} = \frac{m}{d}$, $V_{3} = \frac{125}{1.25}$)
 $\frac{109.5 \times 32.9}{5.5 \times 25} \times 100 = 0.84 \times V \Rightarrow V = 470 \, ml$

(a)
$$N_1 V_1 = N_2 V_2$$

 $0.1 \times V_1 = 0.13 \times 80 \Rightarrow V_1 = 104 \ ml$

24. (a) Molarity =
$$\frac{wt. \times 1000}{\text{Eq. wt.} \times \text{vol.}}$$

 $0.1 = \frac{wt. \times 1000}{40 \times 250}$
 \therefore wt. required = 1 gm
25. (a) $1 = \frac{x \times 1000}{63 \times 100} \Rightarrow x = 6.3$ gms

26. (d)
$$10 \times x = 1 \times 1$$

 $x = 0.1 \ liter = 100 \ cc$

Get More Learning Materials Here :

CLICK HERE >>

23.

🕀 www.studentbro.in

32. (b) In acidic medium 2 molecules of *KMnO*₄ gives 5 atoms of oxygen
2*KMnO*₄ + 3*H*₂*SO*₄ → *K*₂*SO*₄ + 2*MnSO*₄ + 3*H*₂*O* + 5*(O)*
2 × 158 =
$$\frac{316 \times 8}{80}$$
 = 31.6.
So, equivalent wt. of *KMnO*₄ in acidic medium is
= 31.6 gm
33. (c) *N*₁*V*₁ = *N*₂*V*₂
*N*₁ × 20 = *N*₂ × 22.18
*N*₁ = $\frac{N_2 \times 22.18}{20}$ (i)
NaOH solution = *HCI* solution
*N*₂ × 21.5 = $\frac{1}{10} \times 20$
*N*₂ = $\frac{20}{10 \times 21.5}$ (ii)
by eq. (i) and (ii)
*N*₁ = $\frac{20 \times 22.18}{20 \times 10 \times 21.5}$ = $\frac{22.18}{215}$ = 0.1*N*
34. (b) 1*M H*₂*SO*₄ = *NM*₂*K*₂*V*₂
2 × *V*₁ = 10 × 1, *V*₁ = $\frac{10 \times 1}{2}$ = 5 *ml*
36. (c) *N* = $\frac{W_8 \times 1000}{Eq.wt \times V}$; $W_8 = \frac{N \times Eq.wt \times V}{1000}$
= $\frac{0.1 \times 40 \times 100}{Eq.wt \times V}$; $W_8 = \frac{N \times Eq.wt \times V}{1000}$
= $\frac{0.1 \times 40 \times 100}{100}$ = 0.4
38. (d) 20 *ml* of 0.1*N NaCH* neutralize 20 *ml* of 0.1*N* acid
Weight of acid = 0.126 g
Volume = 20 *ml*= $\frac{20}{100}$ *lire*
Normality = 0.1 *N*
Equivalent weight =?
Equivalent weight =?
Equivalent weight = 1
Mormality = 0.1 *N*
Equivalent weight = 1
41. (d) *Na*₂*S* + *I*₂ + *Na*₂*SO*₃ → *Na*₂*S*₂*O*₃ + 2*Nal*
43. (c) *X* = $\frac{50}{10}$ = 5; *Y* = $\frac{50}{20}$ = 2.5
Ratio of g atoms of *X* and *Y* = 2 : 1
47. (c) *N* = $\frac{0.53 \times 1000}{53 \times 100} \Rightarrow N = \frac{1}{10}$
So normality of the solution will be $\frac{N}{10}$.
51. (b) Acid = 0.1 × 100 = 10
Base = 0.2 × 100 = 20
∴ solution will be basic. 0.1*N* of *NaOH* is in 200
*cm*³ of solution.
∴ resulting normality = 0.05 *N*, basic.

53. (b) Equivalent weight of

$$Zn(OH)_2 = \frac{Molecular weight}{acidity} = \frac{M}{1}$$
Acidity of $Zn(OH)_2 = 1$, only one OH is replaced.
55. (a) $M_1V_1 = M_2V_2$
 $(Na_2CO_3) = (HCl)$
 $0.25M \times 25 = 0.5M \times V_2$
 $V_2 = \frac{0.25M \times 25}{0.5M} = 12.5 ml$
56. (c) $\frac{0.16}{x} \times \frac{1000}{25} = \frac{1}{10} \implies \frac{6.4}{x} = \frac{1}{10} \implies x = 64$
Mol. wt. = $64 \times 2 = 128$
57. (d) If $N_1V_1 = N_2V_2$ then the solution will be neutral
 $\therefore 1 \times 100 = 10 \times 10$
 $100 = 100 \Rightarrow$ solution in neutral
59. (c) Volume = $25 ml = \frac{25}{1000} litre$
Normality = $\frac{wt}{eq.wt \times Volume} \Rightarrow 0.12 = \frac{0.1914 \times 1000}{E \times 25}$
 $eq.wt. = \frac{0.1914 \times 1000}{0.12 \times 25} = 63.8$
60. (b) Eq. wt = $\frac{Molecular Wt}{basicity} = \frac{W}{3}$
61. (d) Valency = $\frac{26.89}{8.9} = 3$
at mass = Eq.wt × valency = $8.9 \times 3 = 26.7$
62. (b) $\because 4 gms \text{ of } Br_2 \text{ combines with } \frac{1}{4} \times 80 = 20$
Therefore,
equivalent wt of $Ca = 20$
63. (a) $N = \frac{4 \times 1000}{40 \times 100} = 1N$
64. (d) $N_1V_1 = N_2V_2$
 $1 \times 1 = 0.5 \times 2 \times 1$
as $0.5 N$ will give double the amount of H^+ ions
65. (a) $BaCO_3 \Rightarrow BaO + CO_2 \uparrow$
 $\therefore 197 g BaCO_3$ on decompose gives = $22.4 \ litre CO_2$
 $\therefore 1g BaCO_3$ will give $= \frac{22.4}{197} = \ litre CO_2$
66. (c) As the resultant solution will be neutral so either of them can be used.
67. (d) Phenolphtalein is used as it is colourless and becomes pink only in basic medium.

- 71. (c) As it is a weak aromatic base so it gives colour in acidic medium.
- 72.
- (c) As the resulting solution is acidic.
 (d) Here *KMnO*₄ is used as an indicator as well as a reactant. 73.

Regional www.studentbro.in

(c) Strength $=\frac{W}{V}=NE$ 74.

≫

CLICK HERE

- 966 Chemical Analysis (d) As H_3PO_4 can donate $3H^+$ in the solution, as a result 75. the normality of solution is 3N, as Molarity \times basicity = Normality 76. (b) $I_2 + 2S_2O_3^- \rightarrow 2I^- + S_4O_6^{2-}$ \therefore Eq. wt. = $\frac{1}{2} \times$ molecular wt. $x = \frac{40}{16} = 2.5 \ ml$ (a) $40 \times 1 = 16 \times x \implies$ 77. 78. (b) $18 M \text{ of } H_2 SO_4 = 36 N \text{ of } H_2 SO_4$ $N_1V_1 = N_2V_2 \Longrightarrow 36 \times 10 = N_2 \times 1000$ $\therefore N_2 = 0.36 N$ (d) $\frac{1}{10} = \frac{W \times 1000}{\text{eq.wt} \times \text{vol.}} = \frac{W \times 1000}{49 \times 1000} \Rightarrow W = 4.9 \text{ gms}$ 79. 80. (c) $M_1 V_1 = M_2 V_2$ $0.1 \times V = M_2 \times 2V \Rightarrow M_2 = \frac{1 \times V}{2V} = 0.05M$ (c) $N_1V_1 = N_2V_2 \Rightarrow \frac{1}{5} \times 10 = \frac{1}{20} \times V_2 \Rightarrow V_2 = 40 \ ml$ 81. (b) $N_1 V_1 = N_2 V_2$ 82. $0.15 \times 25 = 0.1V_2 \Longrightarrow V_2 = 37.5 \, ml$ Water to be added = 37.5 - 25 = 12.5 ml83. (c) $N_1V_1 = N_2V_2 \Rightarrow 0.2 \times V_1 = 0.2 \times 40 \Rightarrow V_1 = 40 \, ml$ (c) $Mn^{+7} \rightarrow Mn^{+6} = \frac{158}{1} = 158$ 85. (d) Given, N = 0.1, w = 1.0 gm, equivalent weight = 50, V =88. $V = \frac{w \times 1000}{Eq.wt. \times N} = \frac{1 \times 1000}{50 \times 0.1} = 200 \ cm^3$ 89. (c) $2Ag_2CO_3$ $4Ag + 2CO_2 + O_2$ $[(2 \times 108) + 12 + 48]$ 4×108 4×108 2(216 + 12 + 48) $2 \times 276 = 552$ 4×108
 - ∴ 2.76 gm silver carbonate gives $\frac{432 \times 2.76}{552} 2.16$ gm 90. (a) 0.164 M NaOH ≈ 0.164 N NaOH We know, $N_1V_1 = N_2V_2$; $N_1 \times 25 = 0.164 \times 32.63$

 \therefore 552 gm silver carbonate gives silver = 432 gm.

0.214 $N H_2 SO_4 \cong \frac{0.214}{2} M H_2 SO_4$ (:: basicity of $H_2 SO_4$ is 2) $\cong 0.107 M H_2 SO_4$

91. (a) We know,
$$[H^+] = 10^{-pH} = 10^{-13}$$
;
 $\therefore [OH^-] = \frac{10^{-14}}{10^{-13}} = 10^{-1}$
Hence, normality of solution = 0.1
We know, $w = \frac{NEV}{1000} = \frac{0.1 \times 74 \times 250}{2 \times 1000} = 0.925 \ gm$
92. (d) $N_1V_1 = N_2V_2$ or $M_1V_1 = M_2V_2$
 $\therefore 12 \times V_1 = 18 \times 240$
 $V_1 = \frac{18 \times 240}{12} 260 \ ml = 0.36 \ litre$

93. (c) For complete neutralisation,

milli equivalent of base = milli equivalent of acid $N_1V_1 = N_2V_2 \Rightarrow \frac{1}{10} \times V_1 = \frac{1}{25} \times 100$; $V_1 = 40$ ml. 94. (c) Normality = molarity × basicity or acidity (for *HCl*) $N_2 = 0.4 \times 1 = 0.4 N$ basicity =1 (for *NaOH* acidity =1) $N_1 = 0.6 \times 1 = 0.6 N$ $V_1 = ? V_2 = 30$ cm³ From the equation, $N_1V_1 = N_2V_2$ $0.6 \times V_1 = 0.4 \times 30$ $V_1 = \frac{0.4 \times 30}{0.6} = 20$ cm³ 95. (b) The solubility of I_2 in water increases by the addition of KI

95. (b) The solubility of I_2 in water increases by the addition of *KI* due to ormation of polyhaldie ion, *i.e.*, I_3^-

$$KI + I_2 \rightarrow KI_3$$

96. (d)
$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$$

1 mole $\frac{1}{2}$ mole 1 mole
1 volume $\frac{1}{2}$ volume
1 $ml H_2$ reacts with $\frac{1}{2}ml O_2$
30 ml of H_2 reacts with $=\frac{1}{2} \times 30 = 15ml O_2$
(20–15) = 5 ml of O_2 will left at the end of the reaction.
97. (a) Standard solution of I_2 is used to estimate sulphite,
thiosulphite arsenite etc.

98. (a)
$$I_2 + Na_2S_2O_3 \rightarrow 2NaI + Na_2S_4O_6$$

 $I_2 + S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$

Critical Thinking Questions

(b) $ZnCO_3 \xrightarrow{\Delta} ZnO +$ 1. CO_2 Turns lime water milk (Hot) $ZnO \square ZnO$ (Cool) wellow White (b) $Ba^{+2} + 2CH_3COO^- \rightarrow (CH_3COO)_2Ba$ 2. BaS $_2O_3$ gives SO $_2$ gas with dil. HCl and also yellow ppt. of Barium chromate. $(CH_3COO)Ba + K_2CrO_4 \rightarrow 2CH_3COOK + BaCrO_4 \downarrow$ $Na(NH_4)HPO_4 \xrightarrow{\Delta} NaPO_3 + NH_3 + H_2O$ 3. (c) Sodium meta phosphate (transparent) Microcosmic salt 4. (a) It is a test for iodide. 5. (c) $Ba(NO_3)_2 + Na_2SO_3 \rightarrow Ba(NO_2)_2 + Na_2SO_4$ Na_2SO_4 is insoluble in water. (d) Except CO_3^{--} all other ions are reduced by $KMnO_4$ 6. solution. (c) The brown ring test for NO_2^- and NO_3^- is due to 7. formation of $[Fe(H_2O)_5 NO]^{2+}$

8. (b) It must be sulphide as

$$Pb(CH_3COO)_2 + H_2S \rightarrow PbS + 2CH_3COOH$$

(Black ppt)

9. (c) Hg_2Cl_2 is white insoluble salt.

CLICK HERE

🕀 www.studentbro.in

$$Hg_2Cl_2 + 2NH_4OH \rightarrow Hg + Hg(\underline{NH_2)Cl + NH_4}Cl + 2H_2O$$

Black

- 10. (d) $Zn^{2+} + 2NaOH \rightarrow Zn(OH)_2 + 2Na^+$ $Zn(OH)_2 + 2NaOH \rightarrow Na_2ZnO_2 + 2H_2O.$
- **11.** (c) Chromium ion gives in hot and cold. Oxidising and reducing flame green-colour.
- 12. (b) $HgI_2 + 2KI \rightarrow K_2(HgI_4)$ soluble Red solid $HgI_2 \rightarrow Hg + I_2$ violet foams.
- 13. (c) Yellow filtrate is due to chromate ions (CrO_4^{--}) and green residue is due to $Fe(OH)_2$.

14. (c)
$$1 \times V = \frac{12}{120} \times 2 = 200 \, ml$$
.

15. (a) $AgNO_3$ react with all conditions and gives corresponding result.

$$\begin{split} AgNO_3 + 2NH_3 &\rightarrow [Ag(NH_3)_2]NO_2 + H_2O_{\text{White ppt}} \\ AgNO_3 + NaCl &\rightarrow AgCl + NaNO_3_{\text{White ppt}} \\ 2AgNO_3 + H_2S &\rightarrow Ag_2S + 2HNO_3 \end{split}$$

Black ppt

16. (c) HCl NaOH $N_1V_1 = N_2V_2$

$$N_1 \times 20 m l = 0.1 \times 25$$

$$N_1 = \frac{0.1 \times 25}{20} = 0.125 \ .$$

If one *litre HCl* present in 0.125

Therefore in 10 ml
$$\frac{0.125}{1000} \times 10 = 12.5$$

The normality of conc. HCl is 12.5N.

17. (a) 20 ml of 0.3N Na₂S₂O₃

- = 20ml of $0.3NI_2$ Solution
- = 20 ml of $0.3 N H_2 O_2$ solution

$$\equiv 25 \ ml$$
 of $0.08 \ NH_2O_2$ solution

Mass of
$$H_2O_2$$
 100*ml* solution = $\frac{0.00 \times 17 \times 100}{1000}$

 $0.08 \times 17 \times 100$

 $= 0.136 \ gm$

% = 0.136

68 gm H_2O_2 evolve oxygen at NTP = 22400 ml 0.00136 gm H_2O_2 evolve oxygen at NTP

 $= \frac{22400}{68} \times 0.00136 = 0.448$ For 0.1*N*, the solution is of 0.448 volume.

: 3N, volume = $0.448 \times 3 = 1.344 \ ml$.

18. (a) 'Ba' gives characteristic green flame in Bunsen burner.

19. (c)
$$Pb^{+2} + H_2S \xrightarrow[Backpt]{acidic} PbS \downarrow + H_2 \uparrow$$

 $(Blackpt])$
 $3PbS + 8HNO_3 \rightarrow 3Pb(NO_3)_2 + 2NO + 3S + 4H_2O$
 $Pb(NO_3)_2 + H_2SO_4 \rightarrow PbSO_4 \downarrow + 2HNO_3 \uparrow$
(white ppt)

20. (d) It is a characteristic property of IV group concentration of sulphide ions is lowered by formation of the weak acid H_2S .

Assertion and Reason

1. (b) Lime water become turbid on passing CO_2 into it because both reacts to produce insoluble calcium carbonate.

both reacts to produce insoluble calcium

$$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$$

Lime Water Calcium Carbonate
Calcium Carbonate

If more CO_2 is passed than soluble calcium bicarbonate is formed which clear the solution

 $\begin{array}{c} CaCO_3 + H_2O + CO_2 \rightarrow \begin{array}{c} Ca(HCO_3)_2 \\ \text{Calcium bi Carbonate} \\ \text{(Soluble)} \end{array}$

2.

CLICK HERE

≫

The reason that lime water is $Ca(OH)_2$ is also correct. Here, both assertion and reason are correct but reason is not a correct explanation of assertion.

- (c) Assertion is true but reason is false. Sb(III) is a basic radical of *IIB* group for which group reagent is H_2O is presence of dilute *HCl*. It is necessary to maintain the proper hydrogen ion concentration for the precipitation of IV group cations.
- 3. (d) CuS is one such exception which is not decomposed by dil. H_2SO_4
- 4. (d) $PbCl_2$ does not react with conc. H_2SO_4 as $PbSO_4$ is insoluble in water.
- 5. (e) $ZnCO_3$ will react with conc. H_2SO_4 to give CO_2 Radicals of dil. acid test are decomposed by conc. H_2SO_4 in cold.
- 6. (c) Cd^{2+} salts are generally white in colour, however, CdS is yellow in colour.
- 7. (a) Both assertion and reason are correct and reason is the correct explanation of assertion.
- 8. (d) Cu^{2+} salts are generally blue in colour, however, CuS is black in colour.
- **9.** (a) Both assertion and reason are correct and reason is the correct explanation of assertion.
- **10.** (a) Both assertion and reason are correct and reason is the correct explanation of assertion.
- (e) Sulphides do not give any test with BaCl₂ (aq.) as BaS is soluble in water.
- 12. (c) It is due to the formation of insoluble BiOCl on hydrolysis. $BiCl_3 + H_2O \rightarrow BiOCl + 2HCl$ White pot.

🕀 www.studentbro.in

Get More Learning Materials Here :